Collaborative Research: Crossing the percolation threshold for selective gas transport using interconnected crystals of metal–organic frameworks in polymer-based hybrid membranes
合作研究:利用聚合物杂化膜中金属有机框架的互连晶体跨越选择性气体传输的渗滤阈值
基本信息
- 批准号:2034734
- 负责人:
- 金额:$ 18.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Light gases such as methane, ethane, and ethylene play an important role in industrial applications, including their use as gas and liquid fuels and as precursors in polymer manufacturing. Access to high purity gases is typically required for these applications necessitating an industrial gas separation process. Gas separation technology is also required to reduce the concentration of carbon dioxide and other greenhouse gases in the atmosphere. Accordingly, the development of low-energy and low-cost separations of gas mixtures is critically important to meet industrial demand, address environmental concerns, and improve standards of living. Separating gas molecules from a mixture requires materials (molecular sieves) containing holes with uniform dimensions that are comparable with the sizes of the small gas molecules to be separated. However, suitable molecular sieve particles are usually difficult to form into the geometries necessary for scales relevant to industrial applications or environmental remediation. This project will advance the fundamental science of forming molecular sieve particles into well-connected networks, which will enable the development of large-scale separation technologies. In the networks, the particles will be held together by polymer interfaces designed to minimize any adverse effects on the particle sieving function and, at the same time, preserve the structural integrity of the material. The separation performance, gas transport properties, and structural properties of such networks will be quantified on all relevant length scales. The outcomes of this project will lay the foundation for rationally designed molecular sieve morphologies that can be optimized for the desired gas separation. The investigators will also initiate a new research mentoring program with the objective of teaching and training students from underrepresented groups in STEM. Existing institutional programs will be leveraged, and the use of online tools will be emphasized to enhance the program's effectiveness.Metal-organic frameworks (MOFs) are high porosity molecular sieves exhibiting extraordinary property sets when applied in membrane-based gas separations. However, these materials cannot be easily formed into defect-free membrane geometries. Hence, it is challenging to leverage the intrinsic transport benefits of MOFs for membrane separations. Mixing MOF crystals with polymers to make mixed-matrix membranes (MMMs) is a well-known strategy to form MOF-based membranes. However, the typical separation performance of MMMs is usually lower than that of the corresponding MOFs because MMM transport properties are unfavorably affected by the polymer phase and, in some cases, by interfacial MOF–polymer defects. A clear route to improve MMM performance is to increase MOF concentrations and even reach a percolation threshold to enable diffusion predominantly through the MOF phase, i.e., a situation when gas diffusion in MMMs can proceed mostly over interconnected MOF crystals. The investigators will develop the fundamental science of crossing the percolation threshold for gas transport in the MOF phase of MOF–polymer MMMs to enable separation performance comparable with that of pure MOF membranes. Membrane fabrication strategies will be developed based on a novel functionalization of the external surface of MOF crystals in combination with the development of fundamental understanding of intramembrane gas transport. Advanced nuclear magnetic resonance will be used to investigate changes of all relevant types of microscopic gas transport in MMMs as a function of increasing MOF loading and the diffusion length scale. MOF surface functionalization will also be optimized with respect to enhancing the mechanical properties of the membranes. This project will lead to the development of fundamental chemical separations knowledge related to percolation theory in composites. If successful, this concept will enable pure MOF-like transport properties to be accessed in membranes without the requirement of forming pure MOF films. In this way, new performance limits may be achieved for MMMs, including percolated transport for MOFs that are not easily formed into crystalline films. As a design platform, this approach could be used to improve the productivity and efficiency of chemical separations for membranes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
甲烷、乙烷和乙烯等轻气体在工业应用中发挥着重要作用,包括用作气体和液体燃料以及聚合物制造中的前体。对于需要工业气体分离过程的这些应用,通常需要获得高纯度气体。还需要气体分离技术来降低大气中二氧化碳和其他温室气体的浓度。因此,开发低能量和低成本的气体混合物分离对于满足工业需求、解决环境问题和提高生活水平至关重要。从混合物中分离气体分子需要包含具有与待分离的小气体分子的尺寸相当的均匀尺寸的孔的材料(分子筛)。然而,合适的分子筛颗粒通常难以形成与工业应用或环境修复相关的规模所需的几何形状。该项目将推进将分子筛颗粒形成连接良好的网络的基础科学,这将使大规模分离技术的发展成为可能。在网络中,颗粒将通过聚合物界面保持在一起,所述聚合物界面被设计为最小化对颗粒筛分功能的任何不利影响,并且同时保持材料的结构完整性。这种网络的分离性能、气体传输性能和结构性能将在所有相关的长度尺度上进行量化。该项目的结果将为合理设计分子筛形貌奠定基础,这些分子筛可以优化用于所需的气体分离。研究人员还将启动一项新的研究指导计划,目标是教授和培训来自STEM代表性不足群体的学生。现有的机构计划将得到充分利用,并将强调在线工具的使用,以提高计划的有效性。金属有机框架(MOFs)是高孔隙率分子筛,在应用于膜基气体分离时表现出非凡的性能。然而,这些材料不能容易地形成为无缺陷的膜几何形状。因此,利用MOFs的固有传输益处进行膜分离是具有挑战性的。将M0 F晶体与聚合物混合以制备混合基质膜(MMM)是形成基于M0 F的膜的众所周知的策略。然而,MMM的典型分离性能通常低于相应的M0 F的分离性能,因为MMM传输性能受到聚合物相的不利影响,并且在某些情况下受到M0 F-聚合物界面缺陷的不利影响。改善MMM性能的明确途径是增加MOF浓度,甚至达到渗滤阈值,以使扩散主要通过MOF相,即,当MMM中的气体扩散可以主要在互连的MOF晶体上进行时的情况。研究人员将开发跨越MOF-聚合物MMM的MOF相中气体传输的逾渗阈值的基础科学,以使分离性能与纯MOF膜相当。膜制造策略将开发基于一种新的功能化的外表面的MOF晶体结合膜内气体运输的基本理解的发展。先进的核磁共振将被用来调查MMM中的所有相关类型的微观气体输运的变化作为增加的MOF负载和扩散长度尺度的函数。MOF表面功能化也将在增强膜的机械性能方面进行优化。这个项目将导致与复合材料中的逾渗理论相关的基本化学分离知识的发展。如果成功的话,这个概念将使纯的MOF类传输性能在膜中获得,而不需要形成纯的MOF膜。以这种方式,可以实现MMM的新的性能限制,包括不易形成结晶膜的MOF的迁移。作为一个设计平台,该方法可用于提高膜化学分离的生产率和效率。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Vasenkov其他文献
Ein bisher einmaliger Einblick in die Diffusion durch die Beobachtung der Konzentration von Gastmolekülen in nanoporösen Wirtmaterialien
纳米多孔材料中气体分子控制的扩散
- DOI:
10.1002/ange.200602892 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. Kärger;Pavel Kortunov;Sergey Vasenkov;L. Heinke;Dhananjai B. Shah;Rainer A. Rakoczy;Yvonne Traa;J. Weitkamp - 通讯作者:
J. Weitkamp
Gas self-diffusion in different local environments of mixed-matrix membranes as a function of UiO-66-NH<sub>2</sub> metal–organic framework loading
- DOI:
10.1016/j.micromeso.2024.113249 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Omar Boloki;Stephen Dewitt;Eric T. Hahnert;Zachary Smith;Sergey Vasenkov - 通讯作者:
Sergey Vasenkov
Macroscopic and microscopic gas diffusivity measurements for PIM-COOH/UiO-66-NHsub2/sub composite membranes
PIM - COOH/UiO - 66 - NH₂复合膜的宏观和微观气体扩散率测量
- DOI:
10.1016/j.memsci.2025.124246 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:9.000
- 作者:
Wan-Ni Wu;Omar Boloki;Sergey Vasenkov;Zachary P. Smith - 通讯作者:
Zachary P. Smith
Influence of breakup and reformation of micelles on surfactant diffusion in pure and mixed micellar systems
- DOI:
10.1016/j.micromeso.2008.12.026 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:
- 作者:
Amrish Menjoge;Monica A. James-Smith;Dinesh Shah;Sergey Vasenkov - 通讯作者:
Sergey Vasenkov
Sergey Vasenkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Vasenkov', 18)}}的其他基金
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312001 - 财政年份:2023
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying the Role of Interfaces in Liquid Separation Membranes based on Carbon Molecular Sieves
合作研究:量化基于碳分子筛的液体分离膜中界面的作用
- 批准号:
2135662 - 财政年份:2022
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
Collaborative Research: Enabling rational design of MOF-polymer mixed matrix membranes for liquid separations through understanding of microscale and macroscale properties
合作研究:通过了解微观和宏观特性,实现用于液体分离的 MOF-聚合物混合基质膜的合理设计
- 批准号:
1836735 - 财政年份:2018
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
Collaborative Research: The Role of Sulfonated Polymer Membrane Morphology in Microscale Transport of Organic Molecules
合作研究:磺化聚合物膜形态在有机分子微尺度传输中的作用
- 批准号:
1836551 - 财政年份:2018
- 资助金额:
$ 18.97万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Production of Metal-Organic Molecular Sieves with Optimized Gas Transport Properties
合作研究:具有优化气体传输性能的金属有机分子筛的规模化生产
- 批准号:
1561347 - 财政年份:2016
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
UNS:Collaborative research: Resolving changes in microscopic properties as a result of hybrid polymer-ZIF membrane formation to enable rational design of such membranes
UNS:合作研究:解决混合聚合物-ZIF膜形成导致的微观特性的变化,以实现此类膜的合理设计
- 批准号:
1510411 - 财政年份:2015
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
CAREER: Fundamentals of the Relationship between Pore Structure and Transport of Light Gases in Materials with a Hierarchy of Pore Sizes
职业:具有孔径等级的材料中孔结构与轻气体传输之间关系的基础
- 批准号:
0951812 - 财政年份:2010
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
Collaborative Research: Molecular modeling and experimental investigation of the structure and dynamics of confined ionic liquids and their performance in gas separations
合作研究:限域离子液体的结构和动力学及其在气体分离中的性能的分子建模和实验研究
- 批准号:
0967703 - 财政年份:2010
- 资助金额:
$ 18.97万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Crossing the percolation threshold for selective gas transport using interconnected crystals of metal–organic frameworks in polymer-based hybrid membranes
合作研究:利用聚合物杂化膜中金属有机框架的互连晶体跨越选择性气体传输的渗滤阈值
- 批准号:
2034742 - 财政年份:2021
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: WoU-MMA: RUI: Crossing the Chasm: From Compact Object Mergers to Cosmic Fireworks
合作研究:NSF-BSF:WoU-MMA:RUI:跨越鸿沟:从紧凑物体合并到宇宙烟花
- 批准号:
2107932 - 财政年份:2021
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: WoU-MMA: Crossing the Chasm: From Compact Object Mergers to Cosmic Fireworks
合作研究:NSF-BSF:WoU-MMA:跨越鸿沟:从紧凑物体合并到宇宙烟花
- 批准号:
2107802 - 财政年份:2021
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: WoU-MMA: Crossing the Chasm: From Compact Object Mergers to Cosmic Fireworks
合作研究:NSF-BSF:WoU-MMA:跨越鸿沟:从紧凑物体合并到宇宙烟花
- 批准号:
2107839 - 财政年份:2021
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564497 - 财政年份:2016
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564502 - 财政年份:2016
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564458 - 财政年份:2016
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564457 - 财政年份:2016
- 资助金额:
$ 18.97万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564500 - 财政年份:2016
- 资助金额:
$ 18.97万 - 项目类别:
Continuing Grant
UNS: Collaborative Research: Crossing the boundary: motion of solid objects across air-liquid interfaces
UNS:协作研究:跨越边界:固体物体跨气液界面的运动
- 批准号:
1512192 - 财政年份:2015
- 资助金额:
$ 18.97万 - 项目类别:
Standard Grant