Collaborative Research: Scalable Production of Metal-Organic Molecular Sieves with Optimized Gas Transport Properties

合作研究:具有优化气体传输性能的金属有机分子筛的规模化生产

基本信息

  • 批准号:
    1561347
  • 负责人:
  • 金额:
    $ 13.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Metal-organic molecular sieves are advanced sponge-like materials that possess internal cavities on the molecular scale and exhibit large total pore volume and surface area. The precisely defined pore sizes and surface openings in these molecular sponges only allow molecules of specific size, which is tunable, to be transported through them. It is these unique properties of metal-organic molecular sieves that find their uses in a wide range of applications including separations, catalysis, sensors, drug delivery, and sustainable energy technologies. Currently, these molecular sponges are made using precipitation from a solution. These methods are too expensive for wide commercial uses, primarily because they are not readily scalable. Here, the work aims to develop a new, large-scale production technology based on a scalable spray-drying technique to drastically reduce the fabrication costs and to improve transport properties of these materials. The spray-drying technique will allow controlling and optimizing the pore aperture sizes and pore architecture of nanoporous molecular sponges for such advanced applications. A novel measurement technique will be used to study microscale gas transport in these materials. These studies will be performed to guide the design of molecular sieves optimized with respect to their transport properties. The interdisciplinary nature of the project, spanning material design/synthesis in combination with the advanced transport studies, provide a rich research experience for high school, undergraduate and graduate students involved in the work.The main goal of the researched work is the development of an advanced scalable process for the designed construction of multi-functional/multi-structured nanoporous hybrid metal-organic framework materials and their composites exhibiting the desired transport properties. This goal will be achieved by completing the following three main objectives: 1) to develop aerosol-assisted (i.e., spray-drying) soft chemistry as a new paradigm for the large-scale synthesis of metal-organic frameworks by gaining a fundamental understanding of physico-chemical processes involved in aerosol-assisted soft chemistry, 2) to design and engineer MOF particles with unique microstructures and functionalities, and 3) to establish the relationship between structural and transport properties as well as the related catalytic performance of the resulting new materials through detailed studies of microscopic transport by a recently developed nuclear magnetic resonance technique. This fundamental research will lead to a set of design rules for the commercially-viable synthesis of multi-functional metal-organic framework materials and their composites with unique microstructures optimized for molecular transport and related catalytic performance.
金属有机分子筛是高级海绵状的材料,具有分子尺度的内部空腔,并显示出大孔隙体积和表面积。这些分子海绵中精确定义的孔径和表面开口只能使特定尺寸的分子(可调节)通过它们传输。正是这些金属有机分子筛的独特特性,在包括分离,催化,传感器,药物输送和可持续能量技术在内的广泛应用中找到了它们的用途。当前,这些分子海绵是使用溶液沉淀制成的。这些方法对于广泛的商业用途来说太昂贵了,主要是因为它们不易扩展。在这里,这项工作旨在基于可扩展的喷涂技术开发一种新的大规模生产技术,以大大降低制造成本并改善这些材料的运输特性。喷雾干燥技术将允许控制和优化纳米孔分子海绵的孔径大小和孔构建,以用于此类高级应用。一种新型的测量技术将用于研究这些材料中的微观气体传输。将进行这些研究,以指导针对其运输特性进行优化的分子筛的设计。该项目的跨学科性质,涵盖了材料设计/合成与高级运输研究,为参与工作的高中,本科和研究生提供丰富的研究经验。研究工作的主要目标是开发高级可扩展过程,用于设计多功能/多功能型Nanaportional nanoportional nanoportional nanoportional nanoportional nanopsircitional nanopsircient nanopsirtional nanopsirtional nanopsirtional nanoportional hybrid hybrid hyberienters tortient servories toperies torrienty构造材料和他们的构造材料和他们的展览会和他们的展览会和他们的表演。将通过完成以下三个主要目标来实现这一目标:1)开发辅助(即喷雾干燥)软化学,作为用于大规模合成金属有机框架的新范式,通过获得对涉及气体质量的柔软化学和工程的涉及的物理化学过程的基本理解,以获得对物理学的基本理解,以实现涉及的物理化学过程,以3)通过通过最近开发的核磁共振技术对显微镜运输的详细研究,建立结构和运输特性之间的关系以及所得新材料的相关催化性能。这项基本研究将为多功能金属有机框架材料及其复合材料及其复合材料提供一系列设计规则,并具有针对分子传输和相关催化性能的独特微结构而进行的复合材料。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Potentials and challenges of high-field PFG NMR diffusion studies with sorbates in nanoporous media
  • DOI:
    10.1007/s10450-020-00255-y
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amineh Baniani;Samuel Berens;Matthew P. Rivera;Ryan P. Lively;S. Vasenkov
  • 通讯作者:
    Amineh Baniani;Samuel Berens;Matthew P. Rivera;Ryan P. Lively;S. Vasenkov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Vasenkov其他文献

Influence of breakup and reformation of micelles on surfactant diffusion in pure and mixed micellar systems
  • DOI:
    10.1016/j.micromeso.2008.12.026
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amrish Menjoge;Monica A. James-Smith;Dinesh Shah;Sergey Vasenkov
  • 通讯作者:
    Sergey Vasenkov
Ein bisher einmaliger Einblick in die Diffusion durch die Beobachtung der Konzentration von Gastmolekülen in nanoporösen Wirtmaterialien
纳米多孔材料中气体分子控制的扩散
  • DOI:
    10.1002/ange.200602892
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Kärger;Pavel Kortunov;Sergey Vasenkov;L. Heinke;Dhananjai B. Shah;Rainer A. Rakoczy;Yvonne Traa;J. Weitkamp
  • 通讯作者:
    J. Weitkamp
Gas self-diffusion in different local environments of mixed-matrix membranes as a function of UiO-66-NH<sub>2</sub> metal–organic framework loading
  • DOI:
    10.1016/j.micromeso.2024.113249
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Omar Boloki;Stephen Dewitt;Eric T. Hahnert;Zachary Smith;Sergey Vasenkov
  • 通讯作者:
    Sergey Vasenkov

Sergey Vasenkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergey Vasenkov', 18)}}的其他基金

Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
  • 批准号:
    2312001
  • 财政年份:
    2023
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying the Role of Interfaces in Liquid Separation Membranes based on Carbon Molecular Sieves
合作研究:量化基于碳分子筛的液体分离膜中界面的作用
  • 批准号:
    2135662
  • 财政年份:
    2022
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Crossing the percolation threshold for selective gas transport using interconnected crystals of metal–organic frameworks in polymer-based hybrid membranes
合作研究:利用聚合物杂化膜中金属有机框架的互连晶体跨越选择性气体传输的渗滤阈值
  • 批准号:
    2034734
  • 财政年份:
    2021
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling rational design of MOF-polymer mixed matrix membranes for liquid separations through understanding of microscale and macroscale properties
合作研究:通过了解微观和宏观特性,实现用于液体分离的 MOF-聚合物混合基质膜的合理设计
  • 批准号:
    1836735
  • 财政年份:
    2018
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Sulfonated Polymer Membrane Morphology in Microscale Transport of Organic Molecules
合作研究:磺化聚合物膜形态在有机分子微尺度传输中的作用
  • 批准号:
    1836551
  • 财政年份:
    2018
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Continuing Grant
UNS:Collaborative research: Resolving changes in microscopic properties as a result of hybrid polymer-ZIF membrane formation to enable rational design of such membranes
UNS:合作研究:解决混合聚合物-ZIF膜形成导致的微观特性的变化,以实现此类膜的合理设计
  • 批准号:
    1510411
  • 财政年份:
    2015
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
CAREER: Fundamentals of the Relationship between Pore Structure and Transport of Light Gases in Materials with a Hierarchy of Pore Sizes
职业:具有孔径等级的材料中孔结构与轻气体传输之间关系的基础
  • 批准号:
    0951812
  • 财政年份:
    2010
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular modeling and experimental investigation of the structure and dynamics of confined ionic liquids and their performance in gas separations
合作研究:限域离子液体的结构和动力学及其在气体分离中的性能的分子建模和实验研究
  • 批准号:
    0967703
  • 财政年份:
    2010
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 13.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了