Collaborative Research: Self-Centering Pendulum Shear Walls in Buildings via Nonlinear Elastic Kinematics
合作研究:通过非线性弹性运动学实现建筑物中的自定心摆剪力墙
基本信息
- 批准号:2035690
- 负责人:
- 金额:$ 33.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A grand challenge in structural engineering is to develop building systems that can resist loads from extreme natural hazards, such as hurricanes or earthquakes, with minimum or no damage. Such building systems could enable immediate occupancy and minimum economic losses after an extreme event, contributing to continued national prosperity and welfare. Progress has been made towards addressing this challenge with the development of unbonded, post-tensioned, shear walls (UPSWs) in buildings; yet limiting issues for designing such shear walls remain. This research will explore an innovative concept for structural shear walls to resist lateral loads in buildings and perform damage free during an extreme event. The concept consists of coupled, unbonded, post-tensioned, reinforced concrete walls that interact with the foundation via a curved surface. Lateral deformations will be accommodated through a pendulum-type motion as the wall slides along the bottom curved surface. Lateral resistance will be provided by friction along the curved surface and the vertical unbonded post-tensioned cables. The post-tensioned cables also will help restore the wall to its initial configuration. Energy dissipation of these coupled pendulum walls will be provided by incorporating connecting devices that use elastic buckling and release accumulated elastic energy during the walls' deformations. The system response thus will leverage the resulting deformations rather than trying to constrain them, as in traditional systems. The result will be new technology related to the design of damage-free structural building systems, and a new way of thinking about leveraging system geometry and deformations for enhanced resilient and sustainable buildings. Parallel to the research effort will be complementary educational and outreach components, including the training of two Ph.D. students, research experiences for undergraduate students, a project website with tutorials and research findings for undergraduate and graduate students and practitioners, and outreach activities for middle and high school students. The tutorials, as well as data from this project, also will be made publicly available in the NSF-supported Natural Hazards Engineering Research Infrastructure Data Depot (https://www.designsafe-ci.org). The core idea of this research is that of a new design philosophy envisioned to be unrestricted by traditional material failure limit states. This philosophy will be verified through a new concept for coupled UPSWs. The material response limitations of rocking UPSWs will be addressed by harnessing the nonlinear kinematic behavior resulting from coupled system deformations. Thus, the project objective is to develop the enabling theory and technology for a new concept of UPSWs that can perform damage free and unrestricted by material failure limit states. This objective will be achieved through two unique and complementary features: (1) individual walls gliding along a circular path with no separation at the footing interface, and (2) continuous energy dissipation via devices with controllable elastic instabilities along vertical wall joints. This concept will be designated as a pendulum UPSW system, as it rotates about a fixed point on the wall. The approach to be followed will be to characterize the in-plane response of pendulum UPSWs as viable lateral load resisting elements, develop and characterize the use of elastic meta-materials and meta-structures for dissipating energy via elastic instabilities, and characterize the response of pendulum UPSWs coupled with elastic multi-stable structures as connectors. A combination of analytical, numerical (finite element), and experimental methods will be used. This research will lead to the fundamental integration of system geometry and deformations for the design of lateral load resisting structures that are resilient and sustainable. The study will promote new design concepts that harness deformations for optimal performance rather than performance objectives set to target material limit states. The research also will contribute to the use of nonlinear elastic instabilities in large-scale structural systems. Theory and methods related to damage-free structural systems, friction models, and elastic energy dissipation devices will also be advanced.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结构工程中的一个巨大挑战是开发可以抵抗极端自然危害(例如飓风或地震)的载荷的建筑系统,最小或没有损坏。这种建筑系统可以在极端事件发生后立即占用和最小经济损失,从而导致持续的国家繁荣和福利。通过在建筑物中未经束缚的,张紧后的剪力墙(UPSW)的发展方面取得了进展。然而,限制设计此类剪力墙的问题仍然存在。这项研究将探讨结构剪力壁的创新概念,以抵抗建筑物中的侧向负载,并在极端事件中无损害。该概念由耦合,无基,后张紧,钢筋混凝土壁组成,这些壁通过弯曲表面与基础相互作用。当墙壁沿着底部弯曲的表面滑动时,将通过摆运动来容纳侧向变形。沿弯曲表面和垂直未粘附的后电缆摩擦将提供侧向电阻。张紧的电缆还将有助于将墙恢复到其初始配置。通过在墙壁变形过程中使用弹性屈曲和释放累积的弹性能的连接设备,将提供这些耦合摆壁的能量耗散。因此,系统响应将利用所得的变形,而不是像传统系统一样试图限制它们。结果将是与无损害结构建筑系统设计有关的新技术,以及一种考虑利用系统几何形状和变形以增强弹性和可持续建筑的新方法。与研究工作平行的是互补的教育和外展成分,包括培训两位博士学位。学生,本科生的研究经验,一个项目网站,具有教程和研究结果,针对本科生,研究生和从业者以及中学生的外展活动。 该项目的教程以及该项目的数据也将在NSF支持的自然危害工程研究基础设施数据台(https://www.designsignsafe-ci.org)中公开提供。这项研究的核心思想是一种新的设计理念,即传统物质故障限制状态不受限制。该理念将通过耦合UPSW的新概念进行验证。摇摆UPSW的材料响应限制将通过利用耦合系统变形引起的非线性运动学行为来解决。因此,项目的目标是为新的UPSW概念开发促成理论和技术,该概念可以通过材料故障极限状态执行无损害和不受限制的损害。该目标将通过两个独特的和互补的特征来实现:(1)单个墙壁沿着圆形路径滑行而在立足界面没有分离,以及(2)通过设备连续耗尽沿垂直墙接头的设备连续耗散。该概念将被指定为摆上摆系统,因为它围绕墙上的固定点旋转。要遵循的方法是将摆上摆的平面响应表征为可行的侧面抗载荷元件,开发和表征使用弹性元材料和元结构的使用,以通过弹性不稳定性来耗散能量,并表征pendulum upsws与弹性多稳定稳定结构的倾斜度响应。将使用分析,数值(有限元)和实验方法的组合。这项研究将导致系统几何形状和变形的基本整合,以设计有弹性和可持续性的横向负载结构。该研究将促进新的设计概念,以利用最佳性能的变形,而不是设定目标材料限制状态的性能目标。这项研究还将有助于在大规模结构系统中使用非线性弹性不稳定性。与无损害的结构系统,摩擦模型和弹性耗散设备有关的理论和方法也将得到提出。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multistable Cosine-Curved Dome System for Elastic Energy Dissipation
- DOI:10.1115/1.4043792
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Mansour Alturki;R. Burgueño
- 通讯作者:Mansour Alturki;R. Burgueño
Equivalent viscous damping for a system with energy dissipation via elastic instabilities
- DOI:10.1016/j.engstruct.2020.110753
- 发表时间:2020-10
- 期刊:
- 影响因子:5.5
- 作者:Mansour Alturki;R. Burgueño
- 通讯作者:Mansour Alturki;R. Burgueño
Nonlinear Dynamic FEM Analysis of Unbonded Posttensioned Coupled Pendulum Shear Walls Linked with Elastic Energy Dissipating Connectors
与弹性耗能连接件连接的无粘结后张连摆剪力墙的非线性动态有限元分析
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Silva, P.F.
- 通讯作者:Silva, P.F.
Self-Centering Pendulum Shear Walls via Nonlinear Elastic Kinematics
通过非线性弹性运动学的自定心摆剪力墙
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Silva, P.F.;Dunne, J.;Burgueño, R.
- 通讯作者:Burgueño, R.
Response characterization of multistable shallow domes with cosine-curved profile
- DOI:10.1016/j.tws.2019.03.035
- 发表时间:2019-07-01
- 期刊:
- 影响因子:6.4
- 作者:Alturki, Mansour;Burgueno, Rigoberto
- 通讯作者:Burgueno, Rigoberto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rigoberto Burgueno其他文献
Towards packet-less ultrasonic sensor networks for energy-harvesting structures
- DOI:
10.1016/j.comcom.2016.11.001 - 发表时间:
2017-03-15 - 期刊:
- 影响因子:
- 作者:
Saptarshi Das;Hadi Salehi;Yan Shi;Shantanu Chakrabartty;Rigoberto Burgueno;Subir Biswas - 通讯作者:
Subir Biswas
Rigoberto Burgueno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rigoberto Burgueno', 18)}}的其他基金
Collaborative Research: Self-Centering Pendulum Shear Walls in Buildings via Nonlinear Elastic Kinematics
合作研究:通过非线性弹性运动学实现建筑物中的自定心摆剪力墙
- 批准号:
1762119 - 财政年份:2018
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Tailoring of the Elastic Postbucking Response of Cylindrical Shells: A Route for Exploiting Instabilities in Mechanical Systems
圆柱壳弹性后反冲响应的定制:利用机械系统不稳定性的途径
- 批准号:
1463164 - 财政年份:2015
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Mechanically-equivalent Response Amplifiers and Frequency Modulators for Energy-harvesting Devices
用于能量收集设备的机械等效响应放大器和频率调制器
- 批准号:
1408506 - 财政年份:2014
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: Damage Compliant Inelastic Design Parameters for Performance-Based-Seismic-Design of Slender RC Columns
合作研究:用于细长 RC 柱基于性能的抗震设计的损伤兼容非弹性设计参数
- 批准号:
1000549 - 财政年份:2010
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Hybrid Nanostructured Material Systems for Tailored Stress-Wave Mitigation of Impact and Blast Effects
用于减轻冲击和爆炸效应的定制应力波的混合纳米结构材料系统
- 批准号:
0928835 - 财政年份:2009
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
NEESR-II: Inelastic Web Crushing Performance Limits of High-Strength-Concrete Structural Walls
NEESR-II:高强混凝土结构墙的非弹性腹板破碎性能极限
- 批准号:
0530634 - 财政年份:2005
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Novel Eco-friendly Nano-reinforced Cellular Biobased Composites for Load-bearing Structures
用于承载结构的新型环保纳米增强细胞生物基复合材料
- 批准号:
0409666 - 财政年份:2004
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
相似国自然基金
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
- 批准号:72302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:12104186
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
DULCE (Diabetes InqUiry Through a Learning Collaborative Experience)
DULCE(通过学习协作体验进行糖尿病查询)
- 批准号:
10558119 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329674 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant