Collaborative Research: Self-Centering Pendulum Shear Walls in Buildings via Nonlinear Elastic Kinematics
合作研究:通过非线性弹性运动学实现建筑物中的自定心摆剪力墙
基本信息
- 批准号:2035690
- 负责人:
- 金额:$ 33.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A grand challenge in structural engineering is to develop building systems that can resist loads from extreme natural hazards, such as hurricanes or earthquakes, with minimum or no damage. Such building systems could enable immediate occupancy and minimum economic losses after an extreme event, contributing to continued national prosperity and welfare. Progress has been made towards addressing this challenge with the development of unbonded, post-tensioned, shear walls (UPSWs) in buildings; yet limiting issues for designing such shear walls remain. This research will explore an innovative concept for structural shear walls to resist lateral loads in buildings and perform damage free during an extreme event. The concept consists of coupled, unbonded, post-tensioned, reinforced concrete walls that interact with the foundation via a curved surface. Lateral deformations will be accommodated through a pendulum-type motion as the wall slides along the bottom curved surface. Lateral resistance will be provided by friction along the curved surface and the vertical unbonded post-tensioned cables. The post-tensioned cables also will help restore the wall to its initial configuration. Energy dissipation of these coupled pendulum walls will be provided by incorporating connecting devices that use elastic buckling and release accumulated elastic energy during the walls' deformations. The system response thus will leverage the resulting deformations rather than trying to constrain them, as in traditional systems. The result will be new technology related to the design of damage-free structural building systems, and a new way of thinking about leveraging system geometry and deformations for enhanced resilient and sustainable buildings. Parallel to the research effort will be complementary educational and outreach components, including the training of two Ph.D. students, research experiences for undergraduate students, a project website with tutorials and research findings for undergraduate and graduate students and practitioners, and outreach activities for middle and high school students. The tutorials, as well as data from this project, also will be made publicly available in the NSF-supported Natural Hazards Engineering Research Infrastructure Data Depot (https://www.designsafe-ci.org). The core idea of this research is that of a new design philosophy envisioned to be unrestricted by traditional material failure limit states. This philosophy will be verified through a new concept for coupled UPSWs. The material response limitations of rocking UPSWs will be addressed by harnessing the nonlinear kinematic behavior resulting from coupled system deformations. Thus, the project objective is to develop the enabling theory and technology for a new concept of UPSWs that can perform damage free and unrestricted by material failure limit states. This objective will be achieved through two unique and complementary features: (1) individual walls gliding along a circular path with no separation at the footing interface, and (2) continuous energy dissipation via devices with controllable elastic instabilities along vertical wall joints. This concept will be designated as a pendulum UPSW system, as it rotates about a fixed point on the wall. The approach to be followed will be to characterize the in-plane response of pendulum UPSWs as viable lateral load resisting elements, develop and characterize the use of elastic meta-materials and meta-structures for dissipating energy via elastic instabilities, and characterize the response of pendulum UPSWs coupled with elastic multi-stable structures as connectors. A combination of analytical, numerical (finite element), and experimental methods will be used. This research will lead to the fundamental integration of system geometry and deformations for the design of lateral load resisting structures that are resilient and sustainable. The study will promote new design concepts that harness deformations for optimal performance rather than performance objectives set to target material limit states. The research also will contribute to the use of nonlinear elastic instabilities in large-scale structural systems. Theory and methods related to damage-free structural systems, friction models, and elastic energy dissipation devices will also be advanced.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结构工程中的一个重大挑战是开发能够抵抗极端自然灾害(如飓风或地震)的荷载的建筑系统,而损害最小或没有损害。这样的建筑系统可以在极端事件发生后立即入住率和最大限度地减少经济损失,为国家的持续繁荣和福祉做出贡献。随着建筑中无粘结、后张拉剪力墙(UPSWs)的发展,在解决这一挑战方面取得了进展;但设计此类剪力墙的局限性问题仍然存在。这项研究将探索结构剪力墙的创新概念,以抵抗建筑物的横向荷载,并在极端事件中实现无破坏。该概念由连体、无粘结、后张法、钢筋混凝土墙组成,通过曲面与基础相互作用。当墙沿底部曲面滑动时,将通过摆式运动来适应横向变形。横向阻力将通过沿曲面和垂直无粘结后张拉索的摩擦来提供。后张拉索还将有助于将墙恢复到其初始配置。这些双摆墙的能量耗散将通过加入连接装置来提供,这些连接装置使用弹性屈曲并在墙的变形过程中释放累积的弹性能量。因此,系统响应将利用由此产生的变形,而不是像传统系统那样试图限制它们。其结果将是与无损结构建筑系统设计相关的新技术,以及利用系统几何和变形来增强弹性和可持续建筑的新思维方式。与研究工作并行的还有互补的教育和宣传部分,包括培训两名博士生,为本科生提供研究经验,为本科生和研究生和实践者建立一个项目网站,提供教程和研究成果,以及为初中生和高中生开展外联活动。这些教程以及该项目的数据也将在美国国家科学基金会支持的自然灾害工程研究基础设施数据库(https://www.designsafe-ci.org).)中公开提供这项研究的核心思想是一种新的设计理念,设想不受传统材料失效极限状态的限制。这一理念将通过对偶联的万国邮政开关的新概念加以验证。通过利用耦合系统变形引起的非线性运动学行为,将解决摇摆UPSWs的材料响应限制问题。因此,该项目的目标是开发一种新的概念UPSWs的使能理论和技术,该概念可以执行无损伤和不受材料失效极限状态限制的UPSWs。这一目标将通过两个独特和互补的特征来实现:(1)单个墙体沿着圆形路径滑动,在基础界面没有分离,(2)通过沿垂直墙体接缝具有可控弹性不稳定性的装置连续消能。这一概念将被指定为钟摆UPSW系统,因为它绕着墙上的一个固定点旋转。下一步的工作将是将单摆超静定结构的面内响应描述为可行的抗侧向载荷单元,发展和描述利用弹性超材料和超结构通过弹性不稳定来耗散能量,以及描述以弹性多稳态结构为连接件的单摆超静定结构的响应。将使用分析、数值(有限元)和实验相结合的方法。这项研究将导致系统几何和变形的基本结合,以设计具有弹性和可持续性的抗侧向载荷结构。这项研究将促进新的设计理念,利用变形来实现最佳性能,而不是以材料极限状态为目标的性能目标。该研究还将有助于非线性弹性不稳定性在大型结构系统中的应用。与无损结构系统、摩擦模型和弹性能量耗散装置相关的理论和方法也将得到改进。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multistable Cosine-Curved Dome System for Elastic Energy Dissipation
- DOI:10.1115/1.4043792
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Mansour Alturki;R. Burgueño
- 通讯作者:Mansour Alturki;R. Burgueño
Equivalent viscous damping for a system with energy dissipation via elastic instabilities
- DOI:10.1016/j.engstruct.2020.110753
- 发表时间:2020-10
- 期刊:
- 影响因子:5.5
- 作者:Mansour Alturki;R. Burgueño
- 通讯作者:Mansour Alturki;R. Burgueño
Nonlinear Dynamic FEM Analysis of Unbonded Posttensioned Coupled Pendulum Shear Walls Linked with Elastic Energy Dissipating Connectors
与弹性耗能连接件连接的无粘结后张连摆剪力墙的非线性动态有限元分析
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Silva, P.F.
- 通讯作者:Silva, P.F.
Self-Centering Pendulum Shear Walls via Nonlinear Elastic Kinematics
通过非线性弹性运动学的自定心摆剪力墙
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Silva, P.F.;Dunne, J.;Burgueño, R.
- 通讯作者:Burgueño, R.
Architected materials for tailorable shear behavior with energy dissipation
- DOI:10.1016/j.eml.2019.01.010
- 发表时间:2019-04-01
- 期刊:
- 影响因子:4.7
- 作者:Liu, Suihan;Azad, Ali Imani;Burgueno, Rigoberto
- 通讯作者:Burgueno, Rigoberto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rigoberto Burgueno其他文献
Towards packet-less ultrasonic sensor networks for energy-harvesting structures
- DOI:
10.1016/j.comcom.2016.11.001 - 发表时间:
2017-03-15 - 期刊:
- 影响因子:
- 作者:
Saptarshi Das;Hadi Salehi;Yan Shi;Shantanu Chakrabartty;Rigoberto Burgueno;Subir Biswas - 通讯作者:
Subir Biswas
Rigoberto Burgueno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rigoberto Burgueno', 18)}}的其他基金
Collaborative Research: Self-Centering Pendulum Shear Walls in Buildings via Nonlinear Elastic Kinematics
合作研究:通过非线性弹性运动学实现建筑物中的自定心摆剪力墙
- 批准号:
1762119 - 财政年份:2018
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Tailoring of the Elastic Postbucking Response of Cylindrical Shells: A Route for Exploiting Instabilities in Mechanical Systems
圆柱壳弹性后反冲响应的定制:利用机械系统不稳定性的途径
- 批准号:
1463164 - 财政年份:2015
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Mechanically-equivalent Response Amplifiers and Frequency Modulators for Energy-harvesting Devices
用于能量收集设备的机械等效响应放大器和频率调制器
- 批准号:
1408506 - 财政年份:2014
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: Damage Compliant Inelastic Design Parameters for Performance-Based-Seismic-Design of Slender RC Columns
合作研究:用于细长 RC 柱基于性能的抗震设计的损伤兼容非弹性设计参数
- 批准号:
1000549 - 财政年份:2010
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Hybrid Nanostructured Material Systems for Tailored Stress-Wave Mitigation of Impact and Blast Effects
用于减轻冲击和爆炸效应的定制应力波的混合纳米结构材料系统
- 批准号:
0928835 - 财政年份:2009
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
NEESR-II: Inelastic Web Crushing Performance Limits of High-Strength-Concrete Structural Walls
NEESR-II:高强混凝土结构墙的非弹性腹板破碎性能极限
- 批准号:
0530634 - 财政年份:2005
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Novel Eco-friendly Nano-reinforced Cellular Biobased Composites for Load-bearing Structures
用于承载结构的新型环保纳米增强细胞生物基复合材料
- 批准号:
0409666 - 财政年份:2004
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329674 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329675 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231077 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
- 批准号:
2247880 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Continuing Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
- 批准号:
2409880 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant
Collaborative Research: Supporting Chemistry Students’ Science Practice Self-Efficacy
合作研究:支持化学学生的科学实践自我效能感
- 批准号:
2236032 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Standard Grant














{{item.name}}会员




