EAGER: Computationally Predicting and Characterizing the Immune Response to Viral Infections

EAGER:计算预测和表征对病毒感染的免疫反应

基本信息

  • 批准号:
    2036064
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Pathogens such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) affect different people differently. Whether an individual mounts a strong response or not depends, at least in part, on their genes. Specific genes code for the proteins on the surface of cells that present viral protein fragments to the immune system. Killer T cells recognize these fragments and kill the infected cells. The immune response to SARS-CoV-2 hinges on whether the viral protein fragments bind into a groove in these cell-surface proteins -- like a key into a lock. The molecular biology is well understood. Whether a protein fragment binds or not is a question of 3D structure and simple atomic force calculations. The full set of proteins associated with SARS-CoV-2 was published in March, so the requisite data is available. This project will predict, through purely computational means, whether such binding happens for all viral protein fragments, for all common variants of the cell surface proteins -- so for all keys into all types of locks. This computational ability will be transformative for a scientific understanding of the pandemic If successful, the same computational infrastructure could be deployed in the future for other pandemics -- those caused by viruses or by bacteria. It could also be transformative in characterizing the human immune system, in general, and its response to pathogens. In technical terms, the goal of the project is to predict, through computational means, which peptides derived from SARS- CoV-2 will bind to each allelic variant of MHC-I molecule commonly found in the U.S. population. Human leukocyte antigen (HLA) typing can be performed to establish the allelic variants of MHC-I molecules of individuals. With population-wide typing, the tools developed by this project will predict which individuals in a population are most likely to mount a strong antiviral immune response to the virus, given their MHC-I alleles. Immunopeptidome profiling will be performed of all common allelic variants of MHC-I molecules, first using machine-learning algorithms. Next immunopeptidome profiling will be performed using custom-developed atomic-level simulation software, deployed on graphical processing units.The project will provide a public implementation of the tool set. The results of the research will be promptly disseminated on a website hosted by the University of Minnesota. The front-end will exploit modern software infrastructure for data analytics and visualization. The back-end will consist of a MySQL database, directly linked to the computational engine, running on a distributed platform.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2) 等病原体对不同人的影响不同。 一个人是否会产生强烈的反应至少部分取决于他们的基因。特定基因编码细胞表面的蛋白质,将病毒蛋白质片段呈现给免疫系统。杀伤性 T 细胞识别这些碎片并杀死受感染的细胞。对 SARS-CoV-2 的免疫反应取决于病毒蛋白片段是否与这些细胞表面蛋白的凹槽结合,就像钥匙与锁结合一样。分子生物学很好理解。蛋白质片段是否结合是 3D 结构和简单原子力计算的问题。与 SARS-CoV-2 相关的全套蛋白质已于 3 月份发布,因此可以获得必要的数据。该项目将通过纯粹的计算手段来预测这种结合是否发生在所有病毒蛋白片段、细胞表面蛋白的所有常见变体上——以及所有类型锁的所有钥匙上。 这种计算能力将为对流行病的科学理解带来变革。如果成功,相同的计算基础设施可以在未来部署用于其他流行病——由病毒或细菌引起的流行病。它也可能在表征人类免疫系统的总体特征及其对病原体的反应方面具有变革性。用技术术语来说,该项目的目标是通过计算手段预测哪些源自 SARS-CoV-2 的肽将与美国人群中常见的 MHC-I 分子的每个等位基因变体结合。可以进行人类白细胞抗原 (HLA) 分型以确定个体 MHC-I 分子的等位基因变异。通过人群范围内的分型,该项目开发的工具将预测人群中哪些个体最有可能根据 MHC-I 等位基因对病毒产生强烈的抗病毒免疫反应。首先使用机器学习算法对 MHC-I 分子的所有常见等位基因变体进行免疫肽组分析。接下来的免疫肽组分析将使用部署在图形处理单元上的定制开发的原子级模拟软件进行。该项目将提供该工具集的公共实现。研究结果将立即在明尼苏达大学主办的网站上传播。前端将利用现代软件基础设施进行数据分析和可视化。后端将由一个 MySQL 数据库组成,直接连接到计算引擎,在分布式平台上运行。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Riedel其他文献

Circadian Time Organization of Professional Firemen: Desynchronization—Tau Differing from 24.0 Hours—Documented by Longitudinal Self-assessment of 16 Variables
专业消防员的昼夜节律时间组织:去同​​步化——Tau 与 24.0 小时不同——通过 16 个变量的纵向自我评估记录
  • DOI:
    10.3109/07420528.2013.800087
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    A. Reinberg;Marc Riedel;Eric Brousse;Nadine Le Floc’h;R. Clarisse;B. Mauvieux;Y. Touitou;M. Smolensky;Michel Marlot;Stéphane Berrez;M. Mechkouri
  • 通讯作者:
    M. Mechkouri
24-hour Pattern in Lag Time of Response by Firemen to Calls for Urgent Medical Aid
消防员对紧急医疗救助的响应滞后时间呈 24 小时模式
  • DOI:
    10.3109/07420528.2010.542567
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Eric Brousse;Coralie Forget;Marc Riedel;Michel Marlot;M. Mechkouri;M. Smolensky;Y. Touitou;A. Reinberg
  • 通讯作者:
    A. Reinberg
Quantum Dot Architectures on Electrodes for Photoelectrochemical Analyte Detection
用于光电化学分析物检测的电极上的量子点结构
  • DOI:
    10.1201/9781315196602-14
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marc Riedel;Daniel Schäfer;Fred Lisdat
  • 通讯作者:
    Fred Lisdat
Chronobiologic perspectives of black time—Accident risk is greatest at night: An opinion paper*
黑色时间的时间生物学观点——夜间事故风险最大:意见书*
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    A. Reinberg;M. Smolensky;Marc Riedel;Y. Touitou;Nadine Le Floc’h;R. Clarisse;Michel Marlot;Stéphane Berrez;Didier Pelisse;B. Mauvieux
  • 通讯作者:
    B. Mauvieux
Performance assessment of a 25 kW solid oxide cell module for hydrogen production and power generation
用于制氢和发电的 25 kW 固体氧化物电池模块的性能评估
  • DOI:
    10.1016/j.ijhydene.2024.01.346
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    D. M. Amaya Dueñas;D. Ullmer;Marc Riedel;Santiago Salas Ventura;M. Metten;M. Tomberg;M. Heddrich;S. Ansar
  • 通讯作者:
    S. Ansar

Marc Riedel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Riedel', 18)}}的其他基金

GOALI: SemiSynBio-III: Moving Millions of Droplets at Megahertz Speeds: DNA Computing, DNA Storage, and Synthetic Biology on an Industrial Platform for Digital Microfluidics
目标:SemiSynBio-III:以兆赫兹速度移动数百万个液滴:数字微流体工业平台上的 DNA 计算、DNA 存储和合成生物学
  • 批准号:
    2227578
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Digital Yet Deliberately Random -- Synthesizing Logical Computation on Stochastic Bit Streams
EAGER:数字但故意随机——在随机比特流上综合逻辑计算
  • 批准号:
    1241987
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Computing with Things Small, Wet, and Random - Design Automation for Digital Computation with Nanoscale Technologies and Biological Processes
职业:利用小型、潮湿和随机的事物进行计算 - 利用纳米级技术和生物过程进行数字计算的设计自动化
  • 批准号:
    0845650
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Computationally predicting bacterial and archaeal protein subcellular localization, using experimentally-based criteria
使用基于实验的标准计算预测细菌和古菌蛋白质的亚细胞定位
  • 批准号:
    RGPIN-2016-05748
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
I-Corps: Artificial intelligence-driven process for computationally predicting the outcomes of civil legal matters
I-Corps:人工智能驱动的过程,用于通过计算预测民事法律事务的结果
  • 批准号:
    2042471
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Computationally predicting bacterial and archaeal protein subcellular localization, using experimentally-based criteria
使用基于实验的标准计算预测细菌和古菌蛋白质的亚细胞定位
  • 批准号:
    RGPIN-2016-05748
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally predicting bacterial and archaeal protein subcellular localization, using experimentally-based criteria
使用基于实验的标准计算预测细菌和古菌蛋白质的亚细胞定位
  • 批准号:
    RGPIN-2016-05748
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally predicting bacterial and archaeal protein subcellular localization, using experimentally-based criteria
使用基于实验的标准计算预测细菌和古菌蛋白质的亚细胞定位
  • 批准号:
    RGPIN-2016-05748
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally predicting bacterial and archaeal protein subcellular localization, using experimentally-based criteria
使用基于实验的标准计算预测细菌和古菌蛋白质的亚细胞定位
  • 批准号:
    RGPIN-2016-05748
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally predicting bacterial and archaeal protein subcellular localization, using experimentally-based criteria
使用基于实验的标准计算预测细菌和古菌蛋白质的亚细胞定位
  • 批准号:
    RGPIN-2016-05748
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally predicting prokaryotic protein subcellular localization, using experimentally-based criteria
使用基于实验的标准计算预测原核蛋白质亚细胞定位
  • 批准号:
    240644-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally predicting prokaryotic protein subcellular localization, using experimentally-based criteria
使用基于实验的标准计算预测原核蛋白质亚细胞定位
  • 批准号:
    240644-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally predicting prokaryotic protein subcellular localization, using experimentally-based criteria
使用基于实验的标准计算预测原核蛋白质亚细胞定位
  • 批准号:
    240644-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了