GOALI: SemiSynBio-III: Moving Millions of Droplets at Megahertz Speeds: DNA Computing, DNA Storage, and Synthetic Biology on an Industrial Platform for Digital Microfluidics

目标:SemiSynBio-III:以兆赫兹速度移动数百万个液滴:数字微流体工业平台上的 DNA 计算、DNA 存储和合成生物学

基本信息

  • 批准号:
    2227578
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Ever since Watson and Crick first described the molecular structure of DNA, its information-bearing potential has been apparent to computer scientists. With each nucleotide in the sequence drawn from the four-valued alphabet of A, T, C, and G, a molecule of DNA with n nucleotides stores 4 to the power of n bits of data. In principle, DNA could provide a storage medium that is many orders of magnitude denser than conventional media. Spurred by the biotech and pharma industries, the technology for both sequencing (reading) and synthesizing (writing) DNA has progressed rapidly. Nevertheless, a large gap remains between what is theoretically possible in terms of reading/writing speed and what has been demonstrated in practice. The industrial partner in this research, Seagate, is developing an electronic platform to close the gap. The goal of the academic team is to explore alternate applications of the technology that Seagate is developing. These range from novel ways of performing computation on data stored in DNA, to manipulating synthetic cells, to engineering bioreactors. Throughout, the academic team will strive for a high level of public engagement. Planned activities include initiating policy discussions, particularly regarding artificial life and biosafety, and engaging high-school students in biochem "maker" culture. This proposal pertains to a state-of-the-art system for DNA storage based on digital microfluidics. Such technology manipulates small droplets on a grid via electric charge. The electronics perform a variety of complex operations to assemble DNA: merging, splitting, heating, cooling, mixing, and purifying. The academic team will explore a scheme for computing on data stored not in the sequence of nucleotides of the DNA but rather in topological modifications to the strands: breaks in the phosphodiester backbone of DNA called "nicks" and gaps called "toeholds". In prior work, such computation has been demonstrated by nicking DNA with enzymatic systems such as CRISPR/Cas9. In this work, DNA with the requisite nicks and toeholds will be assembled directly on the electronic grid. The academic team will also explore applications in synthetic biology, including cell-free protein expression, liposome encapsulation, and RNA engineering directly on the electronic grid. The project was jointly funded by the Division of Molecular and Cellular Biosciences (MCB) in the Directorate for Biological Sciences (BIO); Division of Computing and Communication Foundations (CCF) in the Directorate for Computer and Information Science and Engineering (CISE); Division of Electrical, Communications and Cyber Systems (ECCS) in the Directorate for Engineering (ENG) and the Division of Materials Research (DMR) in the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自从沃森和克里克首次描述DNA的分子结构以来,它承载信息的潜力对计算机科学家来说是显而易见的。从A、T、C和G四个字母中提取序列中的每个核苷酸,一个含有n个核苷酸的DNA分子存储4的n次方位数据。原则上,DNA可以提供比传统介质密度大许多数量级的存储介质。在生物技术和制药行业的推动下,DNA测序(读取)和合成(写入)技术发展迅速。然而,在理论上可能的读/写速度和实践中已经证明的速度之间仍然存在很大的差距。这项研究的工业合作伙伴希捷公司正在开发一种电子平台来缩小差距。学术团队的目标是探索希捷正在开发的技术的替代应用。从对存储在DNA中的数据进行计算的新方法,到操纵合成细胞,再到工程生物反应器。在整个过程中,学术团队将努力争取高水平的公众参与。计划中的活动包括启动政策讨论,特别是关于人工生命和生物安全的政策讨论,以及让高中生参与生物化学“创客”文化。这是一种基于数字微流体技术的DNA存储系统。这种技术通过电荷操纵网格上的小液滴。电子设备执行各种复杂的操作来组装DNA:合并、分裂、加热、冷却、混合和纯化。该学术团队将探索一种方案,以计算存储在DNA的核苷酸序列中,而不是存储在链的拓扑修饰中的数据:DNA磷酸二酯主链中的断裂称为“缺口”,间隙称为“支点”。在之前的工作中,这种计算已经通过使用CRISPR/Cas9等酶系统切割DNA来证明。在这项工作中,具有必要刻痕和支点的DNA将直接在电子网格上组装。学术团队还将探索合成生物学的应用,包括无细胞蛋白表达、脂质体封装和直接在电子网格上进行RNA工程。该项目由生物科学理事会分子和细胞生物科学司(MCB)共同资助;计算机与信息科学与工程理事会(CISE)计算与通信基础处;工程理事会(ENG)的电气、通信和网络系统司(ECCS)和数学和物理科学理事会(MPS)的材料研究司(DMR)。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Riedel其他文献

Circadian Time Organization of Professional Firemen: Desynchronization—Tau Differing from 24.0 Hours—Documented by Longitudinal Self-assessment of 16 Variables
专业消防员的昼夜节律时间组织:去同​​步化——Tau 与 24.0 小时不同——通过 16 个变量的纵向自我评估记录
  • DOI:
    10.3109/07420528.2013.800087
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    A. Reinberg;Marc Riedel;Eric Brousse;Nadine Le Floc’h;R. Clarisse;B. Mauvieux;Y. Touitou;M. Smolensky;Michel Marlot;Stéphane Berrez;M. Mechkouri
  • 通讯作者:
    M. Mechkouri
24-hour Pattern in Lag Time of Response by Firemen to Calls for Urgent Medical Aid
消防员对紧急医疗救助的响应滞后时间呈 24 小时模式
  • DOI:
    10.3109/07420528.2010.542567
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Eric Brousse;Coralie Forget;Marc Riedel;Michel Marlot;M. Mechkouri;M. Smolensky;Y. Touitou;A. Reinberg
  • 通讯作者:
    A. Reinberg
Quantum Dot Architectures on Electrodes for Photoelectrochemical Analyte Detection
用于光电化学分析物检测的电极上的量子点结构
  • DOI:
    10.1201/9781315196602-14
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marc Riedel;Daniel Schäfer;Fred Lisdat
  • 通讯作者:
    Fred Lisdat
Chronobiologic perspectives of black time—Accident risk is greatest at night: An opinion paper*
黑色时间的时间生物学观点——夜间事故风险最大:意见书*
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    A. Reinberg;M. Smolensky;Marc Riedel;Y. Touitou;Nadine Le Floc’h;R. Clarisse;Michel Marlot;Stéphane Berrez;Didier Pelisse;B. Mauvieux
  • 通讯作者:
    B. Mauvieux
Performance assessment of a 25 kW solid oxide cell module for hydrogen production and power generation
用于制氢和发电的 25 kW 固体氧化物电池模块的性能评估
  • DOI:
    10.1016/j.ijhydene.2024.01.346
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    D. M. Amaya Dueñas;D. Ullmer;Marc Riedel;Santiago Salas Ventura;M. Metten;M. Tomberg;M. Heddrich;S. Ansar
  • 通讯作者:
    S. Ansar

Marc Riedel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Riedel', 18)}}的其他基金

EAGER: Computationally Predicting and Characterizing the Immune Response to Viral Infections
EAGER:计算预测和表征对病毒感染的免疫反应
  • 批准号:
    2036064
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
EAGER: Digital Yet Deliberately Random -- Synthesizing Logical Computation on Stochastic Bit Streams
EAGER:数字但故意随机——在随机比特流上综合逻辑计算
  • 批准号:
    1241987
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: Computing with Things Small, Wet, and Random - Design Automation for Digital Computation with Nanoscale Technologies and Biological Processes
职业:利用小型、潮湿和随机的事物进行计算 - 利用纳米级技术和生物过程进行数字计算的设计自动化
  • 批准号:
    0845650
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似海外基金

SemiSynBio-III: Towards Understanding and Controlling Redox for Microbial Memory and INteractions - TURIN
SemiSynBio-III:了解和控制微生物记忆和相互作用的氧化还原 - TURIN
  • 批准号:
    2227598
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SemiSynBio-III: DNA Templated Chiral Metamaterials for Information Storage
SemiSynBio-III:用于信息存储的 DNA 模板手性超材料
  • 批准号:
    2227650
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SemiSynBio-III: Precision assembly and electronic properties of protein nanowire circuits using DNA origami
SemiSynBio-III:使用 DNA 折纸技术实现蛋白质纳米线电路的精密组装和电子特性
  • 批准号:
    2227399
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SemiSynBio-III: Novel Memory Devices for High-Density Data Storage and In-Memory Computing Based on Integrated Synthetic DNA-Semiconductors
SemiSynBio-III:基于集成合成 DNA 半导体的用于高密度数据存储和内存计算的新型存储设备
  • 批准号:
    2227484
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SemiSynBio-III: Power Management Strategies for Computing and Storage in Biological, Biohybrid and Synthetic Systems
SemiSynBio-III:生物、生​​物混合和合成系统中计算和存储的电源管理策略
  • 批准号:
    2227609
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SemiSynBio-III: Scalable Nucleic Acid Memory
SemiSynBio-III:可扩展核酸内存
  • 批准号:
    2227626
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SemiSynBio-III: Hybrid cell-semiconducting polymer systems that decode cytosolic information using RNA-regulated electron transfer
SemiSynBio-III:混合细胞半导体聚合物系统,利用 RNA 调节的电子转移解码胞质信息
  • 批准号:
    2227526
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SemiSynBio-II: Hybrid Bio-Electronic Microfluidic Memory Arrays for Large Scale Testing and Remote Deployment
SemiSynBio-II:用于大规模测试和远程部署的混合生物电子微流控存储器阵列
  • 批准号:
    2027045
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SemiSynBio-II: Hybrid Biofilm Semiconductor Information Systems
SemiSynBio-II:混合生物膜半导体信息系统
  • 批准号:
    2027108
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
SemiSynBio-II: Engineering Write, Access, Read, and Protect (WARP) Drives for DNA-based Data Storage Systems.
SemiSynBio-II:用于基于 DNA 的数据存储系统的工程写入、访问、读取和保护 (WARP) 驱动器。
  • 批准号:
    2027655
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了