EAGER: (ST2) Engineering Biomaterials that Integrate in the Native ECM of Cells.

EAGER:(ST2) 整合到细胞天然 ECM 中的工程生物材料。

基本信息

  • 批准号:
    2036842
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Non-technical abstract:Biomaterials are materials that interact with biological systems, and are therefore an essential component for fundamental biology studies, medical applications, and engineering tissues. However, current biomaterials are designed to interface and interact with cells and tissues, and cells cannot actively remodel and incorporate biomaterials into the final cell generated tissue. Inspired by the Square-Table-2 meeting, this project proposes to design Integrative Synbio-Materials (ISMs) as a novel class of biomaterials that cells recycle and integrate into newly built tissue. The researchers hypothesize that ISMs can lead to engineered tissues with novel properties. To test this hypothesis, the research team aims to apply recently developed synthetic biology approaches to incorporate non-standard amino acids in extracellular matrix proteins, which serve as linker molecules to synthetic biomaterials and as such introduce novel chemistry into engineered tissue. Success from this project brings about a paradigm shift from ‘materials that interface with tissues’ to ‘materials that integrate into tissues’ and provides a new platform to study cell-extracellular matrix interactions in their native tissue environment in vivo, to engineer tissues and organs, and to deliver drugs. This research, conducted at the Biological Design Center at Boston University, is tightly coupled to a strong education plan. The project trains students at graduate and undergraduate levels, across the fields of synthetic biology, tissue engineering, and material science, for productive careers in the 21st century scientific workforce. Students will have ample opportunities to learn state-of-the-art technologies, present at international conferences, and connect with research communities in the greater Boston area. Technical abstract:Recent advances in soft biomaterials such as polyacrylamide and polyethylene glycol with highly tunable biophysical properties, controllable degradation characteristics, and release kinetics of biochemical signals have provided unprecedented insights in cellular mechano-transduction and cell signaling. Despite these major advances, all biomaterials share one common limitation; that is cells cannot actively remodel and incorporate that material into the final cell generated tissue. Indeed, when adherent to a material surface, cells degrade the material while depositing new extracellular matrix (ECM) on the cell-material interface, but the biomaterial itself is not incorporated in the de novo tissue matrix. Thus, as cells remodel the cell-material interface, the biophysical or biochemical cues delivered by the material to control cell behavior are progressively lost. This limitation constrains the function of the engineered tissue that can be achieved. To overcome this fundamental limitation of biomaterials, this project proposes to develop Integrative Synbio-Materials (ISMs) as a novel class of biomaterials that cells recycle and use to assemble their ECM. Taking advantage of new insights in fibronectin remodeling, a ubiquitous ECM protein that is critical for the assembly of tissues during embryonic development and after injury, and the development of recoded E. coli strains that incorporate non-standard amino acids in proteins, this project aims to engineer synthetically modified fibronectin fragments that are tagged with azido residues, which provide reactive sites for crosslinking with polymeric materials such as dextran. Using synthetically modified fibronectin fragments as building blocks for ISMs, this project pursues the hypothesis that synthetic control of ISMs, such as tuning stiffness, is retained upon the incorporation of ISMs in de novo assembled ECMs. When successful, this project brings about a paradigm shift from ‘biomaterials that interface with cells’ to ‘biomaterials that integrate into the native ECM of cells’. This Division of Materials Research (DMR) grant supports research to develop Integrative Synbio-Materials (ISMs) as a novel class of biomaterials that cells recycle and use to assemble their extra-cellular matrix (ECM) managed by the Condensed Matter Physics (CMP) Program in DMR of the Mathematical and Physical Sciences (MPS) Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:生物材料是与生物系统相互作用的材料,因此是基础生物学研究,医学应用和工程组织的重要组成部分。然而,目前的生物材料被设计成与细胞和组织接合并相互作用,并且细胞不能主动地重塑生物材料并将其并入最终的细胞产生的组织中。受Square-Table-2会议的启发,该项目提议将整合合成生物材料(ISM)设计为一类新型生物材料,细胞可回收并整合到新构建的组织中。研究人员假设ISM可以导致具有新特性的工程组织。为了验证这一假设,研究小组的目标是应用最近开发的合成生物学方法将非标准氨基酸纳入细胞外基质蛋白中,这些蛋白质作为合成生物材料的连接分子,从而将新的化学物质引入工程组织。该项目的成功带来了从“与组织接口的材料”到“整合到组织中的材料”的范式转变,并提供了一个新的平台来研究细胞-细胞外基质在体内天然组织环境中的相互作用,以工程组织和器官,并提供药物。这项在波士顿大学生物设计中心进行的研究与一个强大的教育计划紧密相连。该项目培养学生在研究生和本科水平,在合成生物学,组织工程和材料科学领域,在21世纪世纪科学劳动力的生产性职业。学生将有充分的机会学习最先进的技术,出席国际会议,并与大波士顿地区的研究社区联系。技术摘要:聚丙烯酰胺和聚乙二醇等软质生物材料具有高度可调的生物物理特性,可控的降解特性和生化信号的释放动力学,其最新进展为细胞机械转导和细胞信号传导提供了前所未有的见解。尽管有这些重大进展,但所有生物材料都有一个共同的局限性;即细胞不能主动重塑并将该材料纳入最终细胞生成的组织中。事实上,当粘附到材料表面时,细胞降解材料,同时在细胞-材料界面上沉积新的细胞外基质(ECM),但生物材料本身不并入从头组织基质中。因此,随着细胞重塑细胞-材料界面,由材料递送以控制细胞行为的生物物理或生物化学线索逐渐丧失。这种限制限制了可以实现的工程化组织的功能。为了克服生物材料的这一根本性限制,该项目提出开发集成合成生物材料(ISMs)作为一类新型生物材料,细胞可回收并用于组装其ECM。利用纤连蛋白重塑的新见解,一种普遍存在的ECM蛋白,对胚胎发育期间和损伤后的组织组装至关重要,以及重新编码的E.该项目的目的是设计合成修饰的纤连蛋白片段,这些片段用叠氮残基标记,为与聚合物材料(如葡聚糖)交联提供反应位点。使用合成修饰的纤连蛋白片段作为ISM的构建块,该项目追求的假设是,ISM的合成控制,如调谐刚度,保留在从头组装ECM中的ISM的掺入后。当成功时,该项目带来了从“与细胞接触的生物材料”到“整合到细胞的天然ECM中的生物材料”的范式转变。该材料研究部(DMR)拨款支持研究开发综合合成生物材料(ISMs)作为一类新型生物材料,细胞可回收并用于组装其细胞外基质(ECM),由数学和物理科学(MPS)DMR中的凝聚态物理(CMP)计划管理。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hacking mechanical memory
黑客机械记忆
  • DOI:
    10.1016/j.bpj.2023.03.012
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Eyckmans, Jeroen
  • 通讯作者:
    Eyckmans, Jeroen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeroen Eyckmans其他文献

Sacrificial capillary pumps to engineer multiscalar biological forms
牺牲性毛细管泵来设计多尺度生物形态
  • DOI:
    10.1038/s41586-024-08175-5
  • 发表时间:
    2024-12-11
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Subramanian Sundaram;Joshua H. Lee;Isabel M. Bjørge;Christos Michas;Sudong Kim;Alex Lammers;João F. Mano;Jeroen Eyckmans;Alice E. White;Christopher S. Chen
  • 通讯作者:
    Christopher S. Chen
Sticky mechanical memory
粘性机械记忆
  • DOI:
    10.1038/nmat3989
  • 发表时间:
    2014-05-21
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Jeroen Eyckmans;Christopher S. Chen
  • 通讯作者:
    Christopher S. Chen

Jeroen Eyckmans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

GPR17抑制IL-33/ST2调控髓鞘再生在血管性认知障碍中的作用和机制研究
  • 批准号:
    JCZRQN202500691
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
电针干预IL-33/ST2通路介导的“神经-免疫”对话缓解心肌缺血后再灌注损伤的机制研究
  • 批准号:
    JCZRQN202500121
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
IL-33/ST2介导的巨噬细胞胞葬功能失调在慢性阻塞性肺病发病中的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
前扣带回IL-33/ST2信号介导胶质细胞-神经元串扰在CPSP及其情绪共病中的作用和机制研究
  • 批准号:
    2024Y9659
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
ST2/MyD88-PD-L1在NSCLC免疫治疗中的表达调控及作用机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
IL-33/ST2通过NF-kB/GSDMD调控巨噬细胞焦亡介导LPS诱导急性 肺损伤的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于IL-33/ST2通过ILC2调控“免疫-代谢”平衡探讨电针干预肥胖痰湿证的作用机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
胃癌细胞来源的外泌体调控SIRT1/NF-κB/IL-33/ST2通路介导肿瘤微环境的作用机制
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
肠道AKK菌调控IL-33/ST2通路治疗艰难梭菌感染的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
肥大细胞脱颗粒调控IL-33/ST2信号轴在慢性肠炎上皮内瘤变中的作用及机制研究
  • 批准号:
    82302968
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Targeting the IL-33/ST2 Pathway in Colorectal Cancer Immunotherapy
结直肠癌免疫治疗中靶向 IL-33/ST2 通路
  • 批准号:
    10732792
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Control of ST2+ Treg Development in Allergic Disease by Bcl6 and Sex Hormone Receptors
Bcl6 和性激素受体控制过敏性疾病中 ST2 Treg 的发育
  • 批准号:
    10633229
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
Control of ST2+ Treg Development in Allergic Disease by Bcl6 and Sex Hormone Receptors
Bcl6 和性激素受体控制过敏性疾病中 ST2 Treg 的发育
  • 批准号:
    10535286
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
ST2陽性肝細胞癌による免疫疲弊システムの解明及び治療法の確立
ST2阳性肝细胞癌免疫耗竭系统的阐明及治疗方法的建立
  • 批准号:
    21K07890
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Targeting the IL-33/ST2 Pathway in Colorectal Cancer Immunotherapy
结直肠癌免疫治疗中靶向 IL-33/ST2 通路
  • 批准号:
    10366086
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
Targeting the IL-33/ST2 Pathway in Colorectal Cancer Immunotherapy
结直肠癌免疫治疗中靶向 IL-33/ST2 通路
  • 批准号:
    10215075
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
IL-33/ST2を介した川崎病および冠動脈病変発症機序の解明
阐明IL-33/ST2介导的川崎病和冠状动脉病变的发病机制
  • 批准号:
    21K15906
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The role of underlying diseases-derived soluble ST2 in influenza infection.
基础疾病来源的可溶性ST2在流感感染中的作用。
  • 批准号:
    21K15470
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Role of Soluble ST2 in Immune Cell Regulation and Secondary Neurologic Injury After Intracerebral Hemorrhage
可溶性 ST2 在脑出血后免疫细胞调节和继发性神经损伤中的作用
  • 批准号:
    10611894
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
Investigation of IL-33/ST2 signaling in the pathogenesis of asthma-COPD overlap
IL-33/ST2 信号传导在哮喘-COPD 重叠发病机制中的研究
  • 批准号:
    20K08508
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了