Strongly-Correlated Hybrid Light-Matter Systems

强相关混合光物质系统

基本信息

  • 批准号:
    2037158
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports an integrated research, education, and outreach program in theoretical condensed matter and materials physics. One of the major goals of modern physics is to discover and engineer new materials with useful properties. The conventional approach to material discovery often involves the trial and error method of examining various electronic compounds in the search of desirable functionalities. This project puts forward a new paradigm for functional material design by combining the rich physics of electrons in solids with laser physics and the optics toolbox. The goal of the project is to put together the theoretical foundation of the nascent field of light-matter coupled materials, where material properties could be tuned at will by controlling the optical environment and/or coupling of electronic, magnetic, and sound modes in solid-state materials to light. Of particular interest are so-called quantum fluids of light, where part-matter and part-light particles form a unique state called a Bose-Einstein condensate. In Bose-Einstein condensates, all constituent particles flow in unison without friction. Another related example of research, supported by this award, is light-induced superconductivity. Superconductivity is a Bose-Einstein condensate of charged particles, which forms in some metals at low temperatures. In this state, electrons flow without any resistance and can indefinitely sustain currents and magnetic fields. Superconductors are of outmost importance to various technologies, from their ubiquitous use in magnetic resonance imaging machines to components of magnetically levitating trains to ultra-sensitive magnetic sensors to superconducting quantum bits in various quantum computing architectures. However, their usefulness is often limited by prohibitively low temperatures, where superconductivity usually emerges. This project will develop novel approaches to enhancing superconductivity to higher temperatures by coupling superconducting materials to light. The research activity will go hand in hand with an education and outreach program, which is an integral part of this award. The program will involve mentoring high-school students from the Washington, DC area's magnet schools and organizing events and competitions in the fields of science, technology, engineering and mathematics. PI's prior high-school advisees have won national awards with PI's research projects and successfully participated in the international physics Olympiads. The PI will continue this successful mentoring program. The PI will also involve students from the historically black colleges and universities in the Washington, DC area. Apart from this, a quality massive open online course on condensed matter physics will be developed with an eye on exposing the students to research in quantum science and material physics. The PI has previously developed such a course on graduate quantum physics, which has been taken by more than 100,000 students worldwide. The broader impacts of all these activities will be early exposure of young talented students to cutting edge research, which will help attract students to careers in science, technology, engineering, and mathematics. Finally, this award will support recruiting and advising undergraduate students, graduate and postdoctoral researchers from underrepresented backgrounds to participate in condensed matter and materials research. TECHNICAL SUMMARYThis award supports an integrated research, education, and outreach program in theoretical condensed matter and materials physics. The emphasis is on relating exciting theoretical results and ideas to experiment and communicating them to a broad audience. The research part of the project is motivated by significant new theoretical and experimental developments and is devoted to theoretical studies of strongly-correlated electron systems interacting with quantum light. The research will focus on:1. Strongly-correlated polariton matter. Exciton-polaritons are part-light, part-matter quantum quasiparticles, resulting from strong light-matter coupling in a combined structure of semiconductor quantum wells and cavity photons. The PI will develop a generalization of this polaritonic matter in strongly-correlated quantum materials, by hybridizing collective modes of the interacting electron systems with light. 2. Cavity-enhanced superconductivity. It has been long known that subjecting a superconductor to external classical radiation can lead to an enhancement of superconductivity in it. The PI will explore quantum generalization of these phenomena, by considering a superconductor interacting with a photon field in optical cavities with an eye on experimentally relevant protocols for cavity-induced enhancement of superconductivity.3. Peierls superradiance. Peierls transition is a spontaneous distortion of a crystal lattice driven by electronic correlations in one-dimensional systems. By exploiting an analogy between the electron-phonon coupling in solids and matter-light coupling in optical cavities, the PI will explore the possibility of spontaneous formation of "photon crystals" driven by a photonic analogue of the Peierls effect.The research activity will go hand in hand with an education and outreach program, which is an integral part of this award. The program will involve mentoring high-school students from the Washington, DC area's magnet schools and organizing events and competitions in the fields of science, technology, engineering, and mathematics. PI's prior high-school advisees have won national awards with PI's research projects and successfully participated in the international physics Olympiads. The PI will continue this successful mentoring program. The PI will also involve students from the historically black colleges and universities in the Washington, DC area. Apart from this, a quality massive open online course on condensed matter physics will be developed with an eye on exposing the students to research in quantum science and material physics. The PI has previously developed such a course on graduate quantum physics, which has been taken by more than 100,000 students worldwide. The broader impacts of all these activities will be early exposure of young talented students to cutting edge research, which will help attract students to careers in science, technology, engineering, and mathematics. Finally, this award will support recruiting and advising undergraduate students, graduate and postdoctoral researchers from underrepresented backgrounds to participate in condensed matter and materials research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持理论凝结物理和材料物理学中的综合研究,教育和外展计划。现代物理学的主要目标之一是发现并设计具有有用特性的新材料。材料发现的常规方法通常涉及在搜索理想功能时检查各种电子化合物的反复试验方法。该项目通过将固体中的丰富电子物理与激光物理和光学工具箱相结合,提出了用于功能材料设计的新范式。该项目的目的是将光耦合材料的新生田地的理论基础汇总在一起,在这些材料中,可以通过控制固态材料中的电子,磁性和声音模式的光学环境和/或耦合来对材料进行调整。特别令人感兴趣的是所谓的光量子流体,其中部分粒子和部分颗粒形成了一种称为Bose-Einstein冷凝物的独特状态。在Bose-Einstein凝结中,所有构成颗粒都一致流动而无需摩擦。该奖项支持的另一个相关研究的相关示例是光引起的超导性。超导性是带电颗粒的Bose-Einstein冷凝物,在低温下某些金属形成。在这种状态下,电子流动没有任何阻力,并且可以无限期地维持电流和磁场。超导体至关重要,从无处不在的磁共振成像机到磁性悬浮列车到超敏感的磁传感器的组件,再到各种量子计算体系结构中的量子位。但是,它们的有用性通常受到高温的过度限制,在这种情况下通常会出现超导性。该项目将通过将超导材料耦合到光线,开发出新的方法来增强对高温的超导性。研究活动将与教育和外展计划并驾齐驱,这是该奖项不可或缺的一部分。该计划将涉及指导来自华盛顿特区磁铁学校的高中生,并在科学,技术,工程和数学领域组织活动和比赛。 PI先前的高中建议通过PI的研究项目赢得了国家奖项,并成功参加了国际物理奥林匹克运动会。 PI将继续这项成功的指导计划。 PI还将参与华盛顿特区历史上黑人学院和大学的学生。除此之外,还将开发有关凝结物理学的优质开放在线课程,以期使学生暴露于量子科学和材料物理学研究。 PI以前曾开发过有关研究生量子物理学的课程,该课程已由全球超过100,000名学生录制。 所有这些活动的更广泛的影响将是年轻才华横溢的学生早日接触尖端研究,这将有助于吸引学生从事科学,技术,工程和数学的职业。最后,该奖项将支持招聘和建议本科生,研究生和博士后研究人员,来自代表性不足的背景,以参与冷凝的物质和材料研究。技术摘要这一奖项支持理论上凝结物质和材料物理学的综合研究,教育和外展计划。重点是将令人兴奋的理论结果和思想联系起来,并将其传达给广泛的受众。该项目的研究部分是由重要的新理论和实验发展的动机,并致力于与量子光相互作用的强相关电子系统的理论研究。该研究将重点关注:1。强烈相关的极化物质。激子 - 摩尔体是部分的部分量子准粒子,是由于在半导体量子孔和空腔光子的结合结构中造成的强光耦合而产生的。 PI将通过将相互作用电子系统的集体模式与光融合在一起,在强相关的量子材料中对这种极化物质进行概括。 2。腔体增强的超导性。众所周知,将超导体对外部经典辐射进行,会导致超导性的增强。 PI将通过考虑与光子腔中的光子场相互作用的超导体相互作用,并着眼于实验相关的方案,以探索这些现象的量子泛化。3。 PEIERLS超赞。 PEIERLS转变是由一维系统中电子相关驱动的晶体晶格的自发变形。通过利用固体中的电子波耦合与光腔中物质耦合之间的类比,PI将探索由PEIERLS效应的光子模拟驱动的自发形成“光子晶体”的可能性。该研究活动将与该奖项的教育和脱落计划相结合,这将是一项集成的部分。该计划将涉及指导来自华盛顿特区磁铁学校的高中生,并在科学,技术,工程和数学领域组织活动和比赛。 PI先前的高中建议通过PI的研究项目赢得了国家奖项,并成功参加了国际物理奥林匹克运动会。 PI将继续这项成功的指导计划。 PI还将参与华盛顿特区历史上黑人学院和大学的学生。除此之外,还将开发有关凝结物理学的优质开放在线课程,以期使学生暴露于量子科学和材料物理学研究。 PI以前曾开发过有关研究生量子物理学的课程,该课程已由全球超过100,000名学生录制。 所有这些活动的更广泛的影响将是年轻才华横溢的学生早日接触尖端研究,这将有助于吸引学生从事科学,技术,工程和数学的职业。最后,该奖项将支持招募和建议本科生,来自代表性不足的背景的研究生和博士后研究人员参与凝结的物质和材料研究。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查审查的审查标准来通过评估来通过评估来获得支持的。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface Cooper-Pair Spin Waves in Triplet Superconductors
三重态超导体中的表面库珀对自旋波
  • DOI:
    10.1103/physrevlett.129.237002
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Poniatowski, Nicholas R.;Curtis, Jonathan B.;Bøttcher, Charlotte G. L.;Galitski, Victor M.;Yacoby, Amir;Narang, Prineha;Demler, Eugene
  • 通讯作者:
    Demler, Eugene
Enhancement of superconductivity with external phonon squeezing
通过外部声子挤压增强超导性
  • DOI:
    10.1103/physrevb.104.l220503
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Grankin, Andrey;Hafezi, Mohammad;Galitski, Victor M.
  • 通讯作者:
    Galitski, Victor M.
Dark Andreev states in superconductors
超导体中的暗安德烈耶夫态
  • DOI:
    10.1103/physrevb.108.024501
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Grankin, Andrey;Galitski, Victor
  • 通讯作者:
    Galitski, Victor
Loschmidt echo of far-from-equilibrium fermionic superfluids
远离平衡态费米子超流体的洛施密特回波
  • DOI:
    10.1016/j.aop.2021.168554
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Rylands, Colin;Yuzbashyan, Emil A.;Gurarie, Victor;Zabalo, Aidan;Galitski, Victor
  • 通讯作者:
    Galitski, Victor
Probing Many-Body Quantum Chaos with Quantum Simulators
  • DOI:
    10.1103/physrevx.12.011018
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Lata Kh Joshi;A. Elben;Amit Vikram;B. Vermersch;V. Galitski;P. Zoller
  • 通讯作者:
    Lata Kh Joshi;A. Elben;Amit Vikram;B. Vermersch;V. Galitski;P. Zoller
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Galitski其他文献

Proof of a Universal Speed Limit on Fast Scrambling in Quantum Systems
量子系统中快速加扰的通用速度限制的证明
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amit Vikram;Laura Shou;Victor Galitski
  • 通讯作者:
    Victor Galitski
The Glass Transition of Quantum Hard Spheres in High Dimensions
高维量子硬球的玻璃化转变
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Winer;Christopher L. Baldwin;Richard Barney;Victor Galitski;Brian Swingle
  • 通讯作者:
    Brian Swingle

Victor Galitski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor Galitski', 18)}}的其他基金

Dynamics of quantum many-body systems
量子多体系统动力学
  • 批准号:
    1613029
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
CAREER: Fluctuation Phenomena Near Quantum Phase Transitions
职业:量子相变附近的涨落现象
  • 批准号:
    0847224
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

基于上转换发光微球的光子晶体构筑及其角度相关发光性能多重调控机制研究
  • 批准号:
    22308200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水稻微纤维相关蛋白MFAP1协调稻瘟病抗性和产量的机制研究
  • 批准号:
    32372553
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
  • 批准号:
    82302422
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SRB1+肿瘤相关成纤维细胞对肝癌免疫治疗疗效双向调节作用的机制研究
  • 批准号:
    82373318
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
  • 批准号:
    82372355
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Attosecond and Strong Field Physics in Correlated Multielectron System
相关多电子系统中的阿秒与强场物理
  • 批准号:
    2419382
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
  • 批准号:
    2333941
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
  • 批准号:
    2316598
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了