Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
基本信息
- 批准号:2316598
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical research on complex quantum systems that are in a highly excited or nonequilibrium state. One of the main challenges of such systems is that they heat to a high temperature, a situation which is detrimental to observing any non-trivial quantum phenomena. Nevertheless, if the system has some symmetries, this can limit heating. The award will explore how symmetries, and generalizing the notion of symmetries, can lead to phenomena out of equilibrium that are immune to heating. The project will bring together methods from mathematical physics, statistical mechanics, and condensed matter physics with the common goal being to study generalized symmetries, out of equilibrium. One consequence of generalized symmetries is that the quantum system can host objects known as "non-abelian anyons". These objects can be used to store memory that is stable for long times. The project will explore how non-abelian anyons can be realized in experimental platforms such as the so-called "Noisy Intermediate Scale Quantum" devices. The project has a strong educational component as it will involve the active participation of a graduate student, an undergraduate student, and a postdoctoral research scientist. Recent developments in generalized symmetries have brought together concepts from mathematical physics, statistical mechanics, condensed matter, and high energy physics. The PI will adapt her course on theoretical condensed matter physics to introduce students to these recent developments. In addition, the PI and the junior research scientists will broaden participation by mentoring high school students through the NYU-GSTEM program. TECHNICAL SUMMARYThis award supports theoretical research on nonequilibrium phenomena in strongly correlated quantum systems. The focus will be twofold. One is to develop methods to study non-abelian excitations, essential for quantum computing, in a highly non-equilibrium setting, realizable in current Noisy Intermediate Scale Quantum (NISQ) devices. The second is to develop methods to study information theoretic measures that quantify how an initial decoherence grows, and entanglement spreads. In the first major thrust, the PI will study Floquet models built out of a fusion category. In these models, the role of topological defects, operators that can be deformed in the space and time direction without changing the physics, will be explored. When the topological defects are invertible, these are unitary symmetries. When the topological defects are non-invertible, these act as projectors, are non-abelian, and are examples of non-invertible symmetries. The latter are also examples of generalized symmetries, and their effect on quantum dynamics will be explored. The Floquet circuits to be studied will include unitary circuits, non-unitary circuits, and dual-unitary circuits, without integrability being a key requirement. When several topological defects are applied to the circuit, creating junctions, its effect on the dynamics will be studied. The implementation of topological defects in NISQ devices will be explored. In the second thrust, the PI will employ an augmented Schwinger-Keldysh formalism to study the space-time propagation of information theoretic measures such as out of time ordered correlators. The goal will be to understand how intrinsic noise can affect propagation of the butterfly front. In addition, how proximity to localization-delocalization transitions affects information propagation will be explored.The project has a strong educational component as it will involve the active participation of a graduate student, an undergraduate student, and a postdoctoral research scientist. Recent developments in generalized symmetries have brought together concepts from mathematical physics, statistical mechanics, condensed matter, and high energy physics. The PI will adapt her course on theoretical condensed matter physics to introduce students to these recent developments. In addition, the PI and the junior research scientists will broaden participation by mentoring high school students through the NYU-GSTEM program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持对处于高度激发或非平衡状态的复杂量子系统的理论研究。这种系统的主要挑战之一是它们会加热到高温,这种情况不利于观察任何非平凡的量子现象。然而,如果系统具有一些对称性,这可以限制加热。该奖项将探讨对称性以及对称性概念的推广如何导致不受加热影响的平衡现象。该项目将汇集数学物理,统计力学和凝聚态物理的方法,共同目标是研究广义对称性,平衡。广义对称性的一个结果是量子系统可以容纳被称为“非阿贝尔任意子”的对象。这些对象可用于存储长期稳定的内存。该项目将探索如何在实验平台上实现非阿贝尔任意子,例如所谓的“噪声中间尺度量子”设备。该项目具有很强的教育成分,因为它将涉及一名研究生,一名本科生和一名博士后研究科学家的积极参与。广义对称性的最新发展汇集了数学物理、统计力学、凝聚态和高能物理的概念。PI将调整她的理论凝聚态物理课程,向学生介绍这些最新的发展。此外,PI和初级研究科学家将通过NYU-GSTEM计划指导高中学生来扩大参与。该奖项支持强关联量子系统中非平衡现象的理论研究。 重点将是双重的。一个是开发方法来研究非阿贝尔激发,量子计算所必需的,在一个高度非平衡的设置,实现在当前的噪声中间尺度量子(NISQ)设备。第二个是开发方法来研究信息理论的措施,量化初始退相干如何增长,纠缠传播。 在第一个主要的推动力,PI将研究Floquet模型建立了一个融合的类别。在这些模型中,拓扑缺陷的作用,可以在空间和时间方向变形而不改变物理的运营商,将被探讨。当拓扑亏损是可逆的,这些是酉对称。当拓扑缺陷是不可逆的,这些作为投影仪,是非阿贝尔的,是不可逆对称的例子。后者也是广义对称性的例子,它们对量子动力学的影响将被探讨。将要研究的Floquet电路将包括酉电路、非酉电路和对偶酉电路,而可积性不是关键要求。当几个拓扑缺陷被应用到电路,创建结,其对动力学的影响将被研究。 将探讨NISQ器件中拓扑缺陷的实现。在第二个推力中,PI将采用增强的Schwinger-Keldysh形式主义来研究信息理论测量的时空传播,例如时间有序的传播。我们的目标是了解固有噪声如何影响蝴蝶阵面的传播。此外,还将探索接近本地化-非本地化转变如何影响信息传播。该项目具有很强的教育成分,因为它将涉及研究生、本科生和博士后研究科学家的积极参与。广义对称性的最新发展汇集了数学物理、统计力学、凝聚态和高能物理的概念。PI将调整她的理论凝聚态物理课程,向学生介绍这些最新的发展。此外,PI和初级研究科学家将通过NYU-GSTEM项目指导高中生来扩大参与范围。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aditi Mitra其他文献
Circumferential Partial-Thickness Burn Caused by Mobile Telephone Charger: A Case Report
- DOI:
10.1016/j.annemergmed.2019.05.026 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Carissa Bunke;Andrew N. Hashikawa;Aditi Mitra - 通讯作者:
Aditi Mitra
Floquet Product Mode
Floquet产品模式
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hsiu;Achim Rosch;Aditi Mitra - 通讯作者:
Aditi Mitra
周期駆動された異方的Dirac電子系に現れる多彩な光誘起Weyl半金属相
周期性驱动各向异性狄拉克电子系统中出现的各种光致外尔半金属相
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
奥村 駿;Aditi Mitra;岡 隆史 - 通讯作者:
岡 隆史
Topological transitions and anomalous Hall effect in periodically driven Dirac semimetals
周期性驱动狄拉克半金属中的拓扑转变和反常霍尔效应
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shun Okumura;Aditi Mitra;Takashi Oka - 通讯作者:
Takashi Oka
Tissue Plasminogen Activator-Induced Angioedema in Ischemic Stroke Patient
- DOI:
10.1016/j.chest.2017.08.034 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Aditi Mitra;Vishal Patel - 通讯作者:
Vishal Patel
Aditi Mitra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aditi Mitra', 18)}}的其他基金
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
2018358 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Active and Driven Matter: Connecting Quantum and Classical Systems
主动和驱动物质:连接量子和经典系统
- 批准号:
1921068 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1607059 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1303177 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1004589 - 财政年份:2010
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
0705584 - 财政年份:2007
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
- 批准号:50906055
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
广义Besov函数类上的几个逼近特征
- 批准号:10926056
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
- 批准号:30772507
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
驻波场驱动的量子相干效应的研究
- 批准号:10774058
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
半导体物理中的非线性偏微分方程组
- 批准号:10541001
- 批准年份:2005
- 资助金额:4.0 万元
- 项目类别:专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
- 批准号:30570686
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
2018358 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Operational nonequilibrium statistical mechanics for isolated quantum systems
孤立量子系统的操作非平衡统计力学
- 批准号:
18K03467 - 财政年份:2018
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formulation of quantum gravity theory based on relativistic nonequilibrium statistical mechanics
基于相对论非平衡统计力学的量子引力理论的表述
- 批准号:
16K05321 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1607059 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
nonequilibrium statistical mechanics and operation of quantum many-body systems
非平衡统计力学和量子多体系统的运行
- 批准号:
26800206 - 财政年份:2014
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1303177 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Entropic Fluctuations in Nonequilibrium Quantum Statistical Mechanics
非平衡量子统计力学中的熵涨落
- 批准号:
425944-2012 - 财政年份:2012
- 资助金额:
$ 40.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Mutual application of quantum physics and nonequilibrium statistical mechanics
量子物理与非平衡统计力学的相互应用
- 批准号:
22540407 - 财政年份:2010
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1004589 - 财政年份:2010
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
0705584 - 财政年份:2007
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant