RTG: Computational Mathematics for Data Science

RTG:数据科学计算数学

基本信息

  • 批准号:
    2038118
  • 负责人:
  • 金额:
    $ 132.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Computational and data-enabled science has become the third pillar of science, completing theory and experimentation. Its success has been fueled by breakthroughs in scientific computing, the explosion of available data, and our ability to formulate mathematical models and calibrate them to measured data. Recent success stories range from numerical weather prediction, which has seen tremendous achievements in accuracy over the past years, to speech recognition, which has dramatically improved in the last decade by systematically learning from data. The aim of this project is to implement a comprehensive vertically integrated Research Training Group (RTG) on the central theme of Computational Mathematics for Data Science. In addition to being areas of fundamental and strategic importance to the United States (e.g., for the development of new medicines, technologies, and defense capabilities), both computational mathematics and data science are areas that can have a tremendous societal impact and will attract a broad range of students. The RTG themes of this project include applications ranging from statistical data assimilation to machine learning, which are among the most transformative technologies of our times and have captured substantial public interest with many potential applications from drug discovery to driverless cars. Despite many advances, there still is a pressing need for more mathematical theory and rigor, which provides ample research opportunities for all levels of mathematicians, from undergraduate students, graduate students, postdocs, and senior scientists.This project will support 3 graduate students per year, 1.5 undergraduate students per year and at lease 1 postdoc per year. At its core, data science uses mathematical methods and computational approaches to extract knowledge and information from data. Harnessing the data revolution requires new mathematical breakthroughs in the form of theory, models, and computational algorithms. Breakthroughs are particularly needed to enable mathematicians and application scientists to analyze and synthesize larger and more complex datasets in an effective, reliable, and explainable manner. To this end, the research conducted in this project will unify and further develop the mathematical theory and computational tools used in applications ranging from data assimilation to machine learning. This comprehensive approach will be based on knowledge from, and make novel contributions to mathematics, computational science, and data science. Particular focus will be on the mathematics of deep learning and data assimilation and their application in impactful areas of medicine (cardiac modeling, medical imaging), the weather and environment (hurricane storm surge modeling), and disease outbreak modeling. Common threads in these areas are their mathematical foundations, most importantly differential equations, optimization, linear algebra and advanced techniques from computational science, such as parallel and distributed computing. This RTG program is anchored around year-long research themes that include one or more of the above mentioned core research themes. Training will by multi-faceted, to include education, potential career skills and experiences, soft skills, scientific integrity, and promoting an appreciation for diversity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算和数据支持的科学已经成为科学的第三大支柱,完成了理论和实验。它的成功得益于科学计算的突破,可用数据的爆炸,以及我们制定数学模型并将其校准到测量数据的能力。最近的成功案例包括过去几年在准确性方面取得巨大成就的数值天气预报,以及通过系统地从数据中学习而在过去十年中显着改善的语音识别。该项目的目的是在数据科学计算数学的中心主题上实施一个全面的垂直整合研究培训组(RTG)。除了是对美国具有根本和战略重要性的领域(例如,为了开发新的药物,技术和国防能力),计算数学和数据科学都是可以产生巨大社会影响的领域,并将吸引广泛的学生。该项目的RTG主题包括从统计数据同化到机器学习的应用,这些应用是我们这个时代最具变革性的技术之一,并且已经引起了公众的极大兴趣,从药物发现到无人驾驶汽车。尽管取得了许多进展,但仍然迫切需要更多的数学理论和严格性,这为所有层次的数学家提供了充足的研究机会,从本科生,研究生,博士后和高级科学家。本项目将支持每年3名研究生,每年1.5名本科生和每年至少1名博士后。数据科学的核心是使用数学方法和计算方法从数据中提取知识和信息。利用数据革命需要在理论、模型和计算算法方面取得新的数学突破。特别需要突破,使数学家和应用科学家能够以有效,可靠和可解释的方式分析和合成更大,更复杂的数据集。为此,在该项目中进行的研究将统一和进一步发展从数据同化到机器学习等应用中使用的数学理论和计算工具。这种综合方法将基于数学、计算科学和数据科学的知识,并为数学、计算科学和数据科学做出新的贡献。特别关注深度学习和数据同化的数学及其在医学(心脏建模,医学成像),天气和环境(飓风风暴潮建模)和疾病爆发建模的影响领域的应用。这些领域的共同点是它们的数学基础,最重要的是微分方程,优化,线性代数和计算科学的高级技术,如并行和分布式计算。这个RTG计划是围绕长达一年的研究主题,其中包括一个或多个上述核心研究主题锚定。培训将是多方面的,包括教育、潜在的职业技能和经验、软技能、科学诚信和促进对多样性的欣赏。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving Graph Neural Networks with Learnable Propagation Operators
  • DOI:
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moshe Eliasof;Lars Ruthotto;Eran Treister
  • 通讯作者:
    Moshe Eliasof;Lars Ruthotto;Eran Treister
Physics-informed distribution transformers via molecular dynamics and deep neural networks
  • DOI:
    10.1016/j.jcp.2022.111511
  • 发表时间:
    2022-08-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Cai, Difeng
  • 通讯作者:
    Cai, Difeng
AUTM Flow: Atomic Unrestricted Time Machine for Monotonic Normalizing Flows
AUTM Flow:用于单调归一化流的原子无限制时间机
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Nagy其他文献

Half-Precision Kronecker Product SVD Preconditioner for Structured Inverse Problems
用于结构化反问题的半精度克罗内克积 SVD 预处理器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yizhou Chen;Xiang Ji;James Nagy
  • 通讯作者:
    James Nagy

James Nagy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Nagy', 18)}}的其他基金

Mixed Precision Arithmetic for Large Scale Linear Inverse Problems
大规模线性反问题的混合精度算法
  • 批准号:
    2208294
  • 财政年份:
    2022
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Flexible Krylov Subspace Projection Methods for Inverse Problems
反问题的灵活 Krylov 子空间投影方法
  • 批准号:
    1819042
  • 财政年份:
    2018
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Gene Golub SIAM Summer School: Data Sparse Approximations and Algorithms
Gene Golub SIAM 暑期学校:数据稀疏近似和算法
  • 批准号:
    1712970
  • 财政年份:
    2017
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Algorithms for Inverse Problems that Exploit Kronecker Product and Tensor Structures
利用克罗内克积和张量结构的反问题算法
  • 批准号:
    1522760
  • 财政年份:
    2015
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Multispectral Tomosynthesis Imaging: Mathematical Models, Algorithms and Software
多光谱断层合成成像:数学模型、算法和软件
  • 批准号:
    1115627
  • 财政年份:
    2011
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Numerical optimization for large-scale experimental design of ill-posed inverse problems
不适定反问题大规模实验设计的数值优化
  • 批准号:
    0915121
  • 财政年份:
    2009
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Continuing Grant
Structured Nonlinear Least Squares Problems in Biomedical and Biomolecular Imaging
生物医学和生物分子成像中的结构化非线性最小二乘问题
  • 批准号:
    0811031
  • 财政年份:
    2008
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Images Degraded by Nonlinear Motion Blurs: Mathematical Models, Algorithms and Applications
非线性运动模糊导致的图像质量下降:数学模型、算法和应用
  • 批准号:
    0511454
  • 财政年份:
    2005
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Iterative Methods in Image Reconstruction
图像重建中的迭代方法
  • 批准号:
    0075239
  • 财政年份:
    2001
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Linear Algebra: Theory, Applications, and Computation
线性代数:理论、应用和计算
  • 批准号:
    9814331
  • 财政年份:
    1998
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: The eleventh annual graduate student mini-conference in computational mathematics
会议:第十一届计算数学研究生小型会议
  • 批准号:
    2349950
  • 财政年份:
    2024
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
REU Site: Computational Mathematics for Data Science
REU 网站:数据科学的计算数学
  • 批准号:
    2349534
  • 财政年份:
    2024
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
  • 批准号:
    2348984
  • 财政年份:
    2024
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Continuing Grant
Conference: NSF Computational Mathematics PI Meeting 2024
会议:2024 年 NSF 计算数学 PI 会议
  • 批准号:
    2417818
  • 财政年份:
    2024
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Investigating Early Elementary Students' Computational Thinking Development in Integrated Mathematics-Coding Instruction
综合数学编码教学中小学生计算思维发展的调查
  • 批准号:
    2300357
  • 财政年份:
    2023
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Continuing Grant
RET Site: Computational Modeling and Simulation for Science, Technology, Engineering, and Mathematics Education
RET 网站:科学、技术、工程和数学教育的计算建模和仿真
  • 批准号:
    2302171
  • 财政年份:
    2023
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
REU Site: Research Experience for Undergraduates in Applied and Computational Mathematics
REU 网站:应用与计算数学本科生的研究经验
  • 批准号:
    2243772
  • 财政年份:
    2023
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Continuing Grant
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
  • 批准号:
    2317280
  • 财政年份:
    2023
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
  • 批准号:
    2246813
  • 财政年份:
    2023
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
Computational mathematics of Arctic processes
北极过程的计算数学
  • 批准号:
    2309682
  • 财政年份:
    2023
  • 资助金额:
    $ 132.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了