Mixed Precision Arithmetic for Large Scale Linear Inverse Problems
大规模线性反问题的混合精度算法
基本信息
- 批准号:2208294
- 负责人:
- 金额:$ 34.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The gaming industry, machine learning (ML), and artificial intelligence (AI) are areas that require substantial computational resources and/or require very fast computations, but do not always require high accuracy in certain computational problems. This has motivated companies to manufacture computer chip hardware, such as graphical processing units (GPUs) that can perform very fast computations using low precision computer arithmetic formats. This can result in a 4-times speedup compared to high precision arithmetic used in typical scientific applications. The potential for much faster computations has fueled a growing interest in the last decade to use powerful GPU servers for scientific applications, and in particular to use mixed precision algorithms for problems that require high accuracy. That is, when possible, use low precision for speed, but mix in high precision computations when needed to maintain accuracy. Although previous work has been done for certain core linear algebra computations, relatively little has been done to exploit and understand the implications of using mixed precision arithmetic for the more challenging class of ill-posed problems. The focus of this work is on developing methods for this frontier, so that efficient solvers can take advantage of modern GPUs with mixed precision computing capabilities. Special considerations, which normally do not arise when solving well-conditioned problems, need to be considered. Applications in machine learning, image restoration and image reconstruction, including breast imaging, will be used as target test problems, but an important aim of this work is to construct a computational platform that can be used to efficiently compute approximate solutions of large scale ill-posed inverse problems in a variety of applications. By developing a flexible and adaptable computational platform, the work produced from this project aims to have a broad scientific impact for applications where it is necessary to compute solutions of large-scale inverse problems with regularization, including astronomy, cosmology, geophysics, machine learning, microscopy, and medical imaging. Students and postdocs will be trained as part of this project. The potential for much faster computations has fueled a growing interest in the last decade to use powerful GPU servers for scientific applications, and in particular to use mixed precision algorithms for problems that require high accuracy; that is, when possible, use low precision for speed, but mix in high precision computations to improve accuracy. Recent previous work to develop mixed precision computational approaches for scientific applications have focused on general, well-conditioned linear systems, including iterative refinement, Cholesky factorization and least squares problems, QR factorization, and GMRES. The aim of this project is to focus on the development of mixed precision computations for the more challenging class of large-scale ill-posed inverse problems. The approach will use a combination of operator approximation, using a low precision truncated singular value decomposition with iterative refinement exploiting mixed precision formats to ensure sufficient accuracy, or as preconditioners in Krylov subspace iterative methods. In addition, mixed precision, possibly with iterative refinement, will be applied within flexible and/or inexact hybrid Krylov subspace methods to reduce storage requirements and computational costs that increase at each iteration. The methods developed in this project can be used as tools to obtain approximate solutions of ill-posed inverse problems, or as solvers in machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
游戏行业、机器学习(ML)和人工智能(AI)是需要大量计算资源和/或需要非常快速计算的领域,但在某些计算问题中并不总是需要高精度。这促使公司制造计算机芯片硬件,例如图形处理单元(GPU),可以使用低精度计算机算术格式执行非常快速的计算。与典型科学应用中使用的高精度算法相比,这可以导致4倍的加速。在过去的十年中,更快的计算潜力推动了人们对使用强大的GPU服务器进行科学应用的兴趣日益增长,特别是使用混合精度算法来解决需要高精度的问题。也就是说,在可能的情况下,使用低精度来提高速度,但在需要保持准确性时混合使用高精度计算。虽然以前的工作已经完成了某些核心线性代数计算,相对较少的已经做了利用和理解的影响,使用混合精度算法更具有挑战性的一类不适定问题。 这项工作的重点是为这一前沿领域开发方法,以便高效的求解器可以利用具有混合精度计算能力的现代GPU。 需要考虑一些特殊的考虑,这些考虑通常在解决良态问题时不会出现。 机器学习、图像恢复和图像重建(包括乳腺成像)中的应用将被用作目标测试问题,但这项工作的一个重要目的是构建一个计算平台,该平台可用于有效地计算各种应用中大规模不适定逆问题的近似解。通过开发一个灵活和适应性强的计算平台,该项目产生的工作旨在对应用产生广泛的科学影响,这些应用需要计算具有正则化的大规模逆问题的解决方案,包括天文学,宇宙学,生物物理学,机器学习,显微镜和医学成像。学生和博士后将作为该项目的一部分接受培训。 在过去的十年中,更快的计算速度的潜力推动了人们对使用强大的GPU服务器进行科学应用的兴趣日益增长,特别是使用混合精度算法来解决需要高精度的问题;也就是说,在可能的情况下,使用低精度来提高速度,但混合高精度计算来提高精度。最近以前的工作,以开发混合精度计算方法的科学应用集中在一般的,良好的条件下的线性系统,包括迭代精化,Cholesky分解和最小二乘问题,QR分解,和GMRES。该项目的目的是专注于发展更具有挑战性的大型不适定反问题的混合精度计算。 该方法将使用算子近似的组合,使用低精度截断奇异值分解与利用混合精度格式的迭代细化,以确保足够的精度,或作为Krylov子空间迭代方法中的预处理器。此外,混合精度,可能与迭代细化,将适用于灵活和/或不精确的混合Krylov子空间方法,以减少存储要求和计算成本,增加在每次迭代。该项目中开发的方法可用作获得不适定逆问题近似解的工具,或用作机器学习中的求解器。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Nagy其他文献
Half-Precision Kronecker Product SVD Preconditioner for Structured Inverse Problems
用于结构化反问题的半精度克罗内克积 SVD 预处理器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yizhou Chen;Xiang Ji;James Nagy - 通讯作者:
James Nagy
James Nagy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Nagy', 18)}}的其他基金
RTG: Computational Mathematics for Data Science
RTG:数据科学计算数学
- 批准号:
2038118 - 财政年份:2021
- 资助金额:
$ 34.66万 - 项目类别:
Continuing Grant
Flexible Krylov Subspace Projection Methods for Inverse Problems
反问题的灵活 Krylov 子空间投影方法
- 批准号:
1819042 - 财政年份:2018
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant
Gene Golub SIAM Summer School: Data Sparse Approximations and Algorithms
Gene Golub SIAM 暑期学校:数据稀疏近似和算法
- 批准号:
1712970 - 财政年份:2017
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant
Algorithms for Inverse Problems that Exploit Kronecker Product and Tensor Structures
利用克罗内克积和张量结构的反问题算法
- 批准号:
1522760 - 财政年份:2015
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant
Multispectral Tomosynthesis Imaging: Mathematical Models, Algorithms and Software
多光谱断层合成成像:数学模型、算法和软件
- 批准号:
1115627 - 财政年份:2011
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant
Numerical optimization for large-scale experimental design of ill-posed inverse problems
不适定反问题大规模实验设计的数值优化
- 批准号:
0915121 - 财政年份:2009
- 资助金额:
$ 34.66万 - 项目类别:
Continuing Grant
Structured Nonlinear Least Squares Problems in Biomedical and Biomolecular Imaging
生物医学和生物分子成像中的结构化非线性最小二乘问题
- 批准号:
0811031 - 财政年份:2008
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant
Images Degraded by Nonlinear Motion Blurs: Mathematical Models, Algorithms and Applications
非线性运动模糊导致的图像质量下降:数学模型、算法和应用
- 批准号:
0511454 - 财政年份:2005
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant
Iterative Methods in Image Reconstruction
图像重建中的迭代方法
- 批准号:
0075239 - 财政年份:2001
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant
Linear Algebra: Theory, Applications, and Computation
线性代数:理论、应用和计算
- 批准号:
9814331 - 财政年份:1998
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant
相似国自然基金
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Development of Efficient Solvers for Ill-conditioned Nonlinear Equations Using Mixed- and Multiple-precision Floating-point Arithmetic
使用混合和多精度浮点运算开发病态非线性方程的高效求解器
- 批准号:
23K11127 - 财政年份:2023
- 资助金额:
$ 34.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Image processing networks with low-precision arithmetic
低精度算法的图像处理网络
- 批准号:
22K04107 - 财政年份:2022
- 资助金额:
$ 34.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
$ 34.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis of delay and coding rate with respect to precision of arithmetic code
时延和编码率与算术码精度的数学分析
- 批准号:
18K04131 - 财政年份:2018
- 资助金额:
$ 34.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Iterative solvers for unsymmetric linear equations using Conjugate Gradient method and High Precision Arithmetic
使用共轭梯度法和高精度算术开发非对称线性方程的迭代求解器
- 批准号:
17K00164 - 财政年份:2017
- 资助金额:
$ 34.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of an efficient hardware algorithm for arbitary precision arithmetic
一种高效任意精度运算硬件算法的研究
- 批准号:
17K17630 - 财政年份:2017
- 资助金额:
$ 34.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Improvement of Convergence and Performance for the Krylov Subspace Methods using High-Precision Arithmetic
使用高精度算法改进 Krylov 子空间方法的收敛性和性能
- 批准号:
25330141 - 财政年份:2013
- 资助金额:
$ 34.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SHF:Small: Solving the Problem of Scalable Multi-Precision Matrix Arithmetic on GPUs
SHF:Small:解决 GPU 上可扩展多精度矩阵算术问题
- 批准号:
1217590 - 财政年份:2012
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant
Breakthrough in numerical analysis and numerical computation related with infinitely-precision arithmetic
无限精度算术相关数值分析和数值计算的突破
- 批准号:
22340018 - 财政年份:2010
- 资助金额:
$ 34.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
RIA: Designing VLSI Arithmetic Arrays to Satisfy Precision Constraints
RIA:设计 VLSI 算术数组以满足精度约束
- 批准号:
9108086 - 财政年份:1991
- 资助金额:
$ 34.66万 - 项目类别:
Standard Grant