Structured Nonlinear Least Squares Problems in Biomedical and Biomolecular Imaging

生物医学和生物分子成像中的结构化非线性最小二乘问题

基本信息

  • 批准号:
    0811031
  • 负责人:
  • 金额:
    $ 29.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This project has significant mathematical and computational challenges, and at the same time is focused on specific applications in biomedical (tomosynthesis) and biomolecular (microscopy) imaging.The mathematical models addressed in this project are difficult ill-posed inverse problems. Computed solutions of these problems are very sensitive to errors in the data, and implementation for large scale 3-dimensional images is nontrivial. New image post processing algorithms developed in this project will be based on computing solutions of large scale structured nonlinear least squares problems.Efficiency will be obtained by exploiting algorithmic structure of the nonlinear least squares problem, as well as structure that arises in the applications. Collaborations with researchers in the School of Medicine and Winship Cancer Research Center at Emory University will be used to test and verify developed methods, and will facilitate efforts to transition new software to clinical use.Improved image reconstruction and post processing algorithms for tomosynthesis can have a profound impact on breast cancer screening. In addition to providing better screening capabilities than mammography, tomosynthesis requires less compression of the breast (reducing physical pain to the patient), and it requires a smaller radiation dose than computed tomography (CT). In addition to its application to breast cancer screening, tomosynthesis can be used for many other medical imaging applications where standard x-ray and CT are used. Thus, advances in computational methods for this application can have a very broad impact in the medical field. In the case of biomolecular imaging, improved computational approaches can help provide inexpensive, yet accurate, point-of-care diagnostic imaging systems. This can significantly impact the monitoring of infections that have serious consequences to society; for example, management of HIV infected patients in poor regions of the world. Moreover, the application considered in this project (deconvolution microscopy), can be used to examine many other microscopic quantities, and thus development of new algorithms that provide better and faster reconstructions, can have a broad impact in many scientific fields, including biology, chemistry, neuroscience, and physics.
该项目具有重大的数学和计算挑战,同时专注于生物医学(断层合成)和生物分子(显微镜)成像的特定应用。该项目中解决的数学模型是困难的不适定逆问题。这些问题的计算解决方案是非常敏感的数据中的错误,并实现大规模的三维图像是不平凡的。 本项目开发的新的图像后处理算法将基于大规模结构化非线性最小二乘问题的计算解,通过利用非线性最小二乘问题的算法结构以及应用中出现的结构来获得效率。 与埃默里大学医学院和Winship癌症研究中心的研究人员的合作将用于测试和验证开发的方法,并将促进新软件向临床应用的过渡。改进的断层合成图像重建和后处理算法将对乳腺癌筛查产生深远的影响。除了提供比乳房X线摄影更好的筛查能力之外,断层合成需要更少的乳房压迫(减少患者的身体疼痛),并且它需要比计算机断层扫描(CT)更小的辐射剂量。 除了其在乳腺癌筛查中的应用之外,断层合成还可以用于使用标准X射线和CT的许多其他医学成像应用。因此,这种应用的计算方法的进步可以在医学领域产生非常广泛的影响。 在生物分子成像的情况下,改进的计算方法可以帮助提供廉价但准确的即时诊断成像系统。这可能会严重影响对社会产生严重后果的感染的监测,例如世界贫困地区艾滋病毒感染患者的管理。此外,该项目中考虑的应用(反卷积显微镜)可用于检查许多其他微观量,因此开发提供更好和更快重建的新算法,可以在许多科学领域产生广泛影响,包括生物学,化学,神经科学和物理学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Nagy其他文献

Half-Precision Kronecker Product SVD Preconditioner for Structured Inverse Problems
用于结构化反问题的半精度克罗内克积 SVD 预处理器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yizhou Chen;Xiang Ji;James Nagy
  • 通讯作者:
    James Nagy

James Nagy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Nagy', 18)}}的其他基金

Mixed Precision Arithmetic for Large Scale Linear Inverse Problems
大规模线性反问题的混合精度算法
  • 批准号:
    2208294
  • 财政年份:
    2022
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
RTG: Computational Mathematics for Data Science
RTG:数据科学计算数学
  • 批准号:
    2038118
  • 财政年份:
    2021
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Continuing Grant
Flexible Krylov Subspace Projection Methods for Inverse Problems
反问题的灵活 Krylov 子空间投影方法
  • 批准号:
    1819042
  • 财政年份:
    2018
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Gene Golub SIAM Summer School: Data Sparse Approximations and Algorithms
Gene Golub SIAM 暑期学校:数据稀疏近似和算法
  • 批准号:
    1712970
  • 财政年份:
    2017
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Algorithms for Inverse Problems that Exploit Kronecker Product and Tensor Structures
利用克罗内克积和张量结构的反问题算法
  • 批准号:
    1522760
  • 财政年份:
    2015
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Multispectral Tomosynthesis Imaging: Mathematical Models, Algorithms and Software
多光谱断层合成成像:数学模型、算法和软件
  • 批准号:
    1115627
  • 财政年份:
    2011
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Numerical optimization for large-scale experimental design of ill-posed inverse problems
不适定反问题大规模实验设计的数值优化
  • 批准号:
    0915121
  • 财政年份:
    2009
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Continuing Grant
Images Degraded by Nonlinear Motion Blurs: Mathematical Models, Algorithms and Applications
非线性运动模糊导致的图像质量下降:数学模型、算法和应用
  • 批准号:
    0511454
  • 财政年份:
    2005
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Iterative Methods in Image Reconstruction
图像重建中的迭代方法
  • 批准号:
    0075239
  • 财政年份:
    2001
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Linear Algebra: Theory, Applications, and Computation
线性代数:理论、应用和计算
  • 批准号:
    9814331
  • 财政年份:
    1998
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant

相似海外基金

New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Fellowship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
  • 批准号:
    DP240101494
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Discovery Projects
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Research Grant
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Research Grant
CAREER: Bridging Infrared and Visible Photonics with Chip-ready Nonlinear and Quantum Metadevices
职业:通过芯片就绪的非线性和量子元设备桥接红外和可见光光子学
  • 批准号:
    2339271
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了