EAGER: SaTC-EDU: Artificial Intelligence and Cybersecurity Research and Education at Scale
EAGER:SaTC-EDU:大规模人工智能和网络安全研究与教育
基本信息
- 批准号:2038483
- 负责人:
- 金额:$ 29.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The regularity of devastating cyber-attacks has made cybersecurity a significant challenge for society. Artificial intelligence (AI) holds significant promise in sifting through large volumes of cybersecurity data to proactively identify emerging threats with unprecedented efficiency. However, AI and cybersecurity are diverse, complex, and rapidly evolving areas. As a result, there is a lack of a diverse workforce knowledgeable in explainable and trustworthy AI, validation of AI systems, and AI safety (including AI for security and security for AI). In order to proactively foster a vibrant AI for cybersecurity system, the project will leverage interdisciplinary academic and industry leaders to support the development of a novel “AI4Cyber” education and research program that can be delivered at scale to meet the rapidly increasing demand for a large, diverse, and well-trained AI cybersecurity workforce. The project team proposes to integrate traditionally disparate AI tools, data, and resources from industry (e.g., FireEye, Microsoft), nonprofit organizations, and National Science Foundation programs (e.g., Secure and Trustworthy Cyberspace, CyberCorps®, and Cybersecurity Innovation for Cyberinfrastructure). AI4Cyber will serve as a resource for the AI for cybersecurity community to facilitate innovative pedagogy and foster interdisciplinary research for five data-rich and ever-evolving cybersecurity applications. These applications include cyber threat intelligence, privacy analytics, disinformation and computational propaganda, security operations centers, and adversarial machine learning. The project will also help to facilitate highly visible competitions and knowledge sharing at professional societies and industry cybersecurity venues. In addition, AI4Cyber will be integrated into the first free AI for Cybersecurity Massively Open Online Course (MOOC) delivered on edX, which is the world’s largest nonprofit MOOC provider. Selected course content will also be integrated into the master’s in cybersecurity programs at the University of Arizona and Indiana University. Because both the University of Arizona and Indiana University are designated as National Security Agency and Department of Homeland Security Centers of Academic Excellence in Cyber Defense, and the University of Arizona is a Hispanic Serving Institution, not only will the proposed programs be of high quality, but they also have the potential to reach a diverse set of students and increase diversity in the AI-cybersecurity workforce. This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
破坏性网络攻击的规律性使网络安全成为社会的重大挑战。人工智能(AI)在筛选大量网络安全数据方面具有重要的前景,可以以前所未有的效率主动识别新兴威胁。然而,人工智能和网络安全是多样化、复杂且快速发展的领域。因此,缺乏一支在可解释和可信赖的人工智能、人工智能系统验证和人工智能安全(包括人工智能安全和人工智能安全)方面知识渊博的多元化劳动力队伍。为了积极培育充满活力的人工智能网络安全系统,该项目将利用跨学科的学术和行业领导者来支持开发一个新的“AI 4Cyber”教育和研究计划,该计划可以大规模交付,以满足对庞大,多样化和训练有素的人工智能网络安全劳动力的快速增长的需求。项目团队建议整合传统上不同的人工智能工具,数据和行业资源(例如,FireEye、Microsoft)、非营利组织和国家科学基金会计划(例如,安全和值得信赖的网络空间,CyberCorps®和网络基础设施的网络安全创新)。AI 4Cyber将作为AI网络安全社区的资源,促进创新教学,并促进对五个数据丰富且不断发展的网络安全应用的跨学科研究。这些应用包括网络威胁情报、隐私分析、虚假信息和计算宣传、安全运营中心和对抗性机器学习。 该项目还将有助于促进专业协会和行业网络安全场所的高度可见的竞赛和知识共享。此外,AI 4Cyber将被整合到世界上最大的非营利MOOC提供商edX上提供的第一个免费的AI网络安全大规模开放在线课程(MOOC)中。选定的课程内容也将被整合到亚利桑那大学和印第安纳州大学的网络安全硕士课程中。由于亚利桑那大学和印第安纳州大学都被指定为国家安全局和国土安全部网络防御学术卓越中心,亚利桑那大学是一个西班牙裔服务机构,不仅拟议的计划是高质量的,而且他们也有可能接触到多样化的学生,增加人工智能网络安全工作人员的多样性。 该项目得到了安全和值得信赖的网络空间(SaTC)计划的特别倡议的支持,以促进网络安全,人工智能和教育领域之间新的,以前未探索的合作。SATC计划与联邦网络安全研究和发展战略计划和国家隐私研究战略保持一致,以保护和维护网络系统日益增长的社会和经济效益,同时确保安全和隐私。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trailblazing the Artificial Intelligence for Cybersecurity Discipline: A Multi-Disciplinary Research Roadmap
- DOI:10.1145/3430360
- 发表时间:2020-12-01
- 期刊:
- 影响因子:2.5
- 作者:Samtani, Sagar;Kantarcioglu, Murat;Chen, Hsinchun
- 通讯作者:Chen, Hsinchun
ACM KDD AI4Cyber/MLHat: Workshop on AI-enabled Cybersecurity Analytics and Deployable Defense
ACM KDD AI4Cyber/MLHat:人工智能网络安全分析和可部署防御研讨会
- DOI:10.1145/3534678.3542894
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Samtani, Sagar;Wang, Gang;Ahmadzadeh, Ali;Ciptadi, Arridhana;Yang, Shanchieh;Chen, Hsinchun
- 通讯作者:Chen, Hsinchun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hsinchun Chen其他文献
Chapter 7 Spatio-Temporal Data Analysis in Security Informatics
第7章安全信息学时空数据分析
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
D. Zeng;Hsinchun Chen;Wei Chang - 通讯作者:
Wei Chang
AI, E-government, and Politics 2.0
- DOI:
10.1109/mis.2009.91 - 发表时间:
2009-09 - 期刊:
- 影响因子:6.4
- 作者:
Hsinchun Chen - 通讯作者:
Hsinchun Chen
Fostering Cybersecurity Big Data Research : A Case Study of the AZSecure Data System
促进网络安全大数据研究:AZSecure 数据系统案例研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Resha Shenandoah;Sagar Samtani;Mark W. Patton;Hsinchun Chen - 通讯作者:
Hsinchun Chen
Approach on the Vocabulary Problem in Collaboration
协作中词汇问题的解决方法
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Hsinchun Chen - 通讯作者:
Hsinchun Chen
Chapter 10 Social Network Analysis for Terrorism Research
第10章恐怖主义研究的社交网络分析
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
E. Reid;Hsinchun Chen;J. Xu - 通讯作者:
J. Xu
Hsinchun Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hsinchun Chen', 18)}}的其他基金
CICI: UCSS: Enhancing the Usability of Vulnerability Assessment Results for Open-Source Software Technologies in Scientific Cyberinfrastructure: A Deep Learning Perspective
CICI:UCSS:增强科学网络基础设施中开源软件技术漏洞评估结果的可用性:深度学习视角
- 批准号:
2319325 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Cybersecurity Big Data Research for Hacker Communities: A Topic and Language Modeling Approach
SaTC:核心:小型:黑客社区的网络安全大数据研究:主题和语言建模方法
- 批准号:
1936370 - 财政年份:2019
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
CICI: SSC: Proactive Cyber Threat Intelligence and Comprehensive Network Monitoring for Scientific Cyberinfrastructure: The AZSecure Framework
CICI:SSC:科学网络基础设施的主动网络威胁情报和综合网络监控:AZSecure 框架
- 批准号:
1917117 - 财政年份:2019
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Cybersecurity Scholarship-for-Service Renewal at The University of Arizona:The AZSecure SFS Program
亚利桑那大学网络安全服务更新奖学金:AZSecure SFS 计划
- 批准号:
1921485 - 财政年份:2019
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
EAGER: A Longitudinal Study of Knowledge Diffusion and Societal Impact of Nanomanufacturing Research & Development: Harnessing Data for Science and Engineering
EAGER:纳米制造研究的知识传播和社会影响的纵向研究
- 批准号:
1832926 - 财政年份:2018
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Cybersecurity Big Data and Analytics Sharing Platform
网络安全大数据和分析共享平台
- 批准号:
1719477 - 财政年份:2017
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
EAGER: A Systems Approach for Identification and Evaluation of Nanoscience and Nanomanufacturing Opportunities and Risks
EAGER:识别和评估纳米科学和纳米制造机会和风险的系统方法
- 批准号:
1442116 - 财政年份:2014
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
CIF21 DIBBs: DIBBs for Intelligence and Security Informatics Research Community
CIF21 DIBB:用于情报和安全信息学研究社区的 DIBB
- 批准号:
1443019 - 财政年份:2014
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
SBE TTP: Medium: Securing Cyber Space: Understanding the Cyber Attackers and Attacks via Social Media Analytics
SBE TTP:媒介:保护网络空间:通过社交媒体分析了解网络攻击者和攻击
- 批准号:
1314631 - 财政年份:2013
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Cybersecurity Scholarship-for-Service at The Unive
大学网络安全服务奖学金
- 批准号:
1303362 - 财政年份:2013
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
相似海外基金
SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
- 批准号:
2335807 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
- 批准号:
2335624 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
- 批准号:
2039289 - 财政年份:2021
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm
EAGER:SaTC-EDU:人工智能时代的网络安全教育:一种新颖的主动协作学习范式
- 批准号:
2114974 - 财政年份:2021
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Transformative Educational Approaches to Meld Artificial Intelligence and Cybersecurity Mindsets
EAGER:SaTC-EDU:融合人工智能和网络安全思维的变革性教育方法
- 批准号:
2115025 - 财政年份:2021
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Artificial Intelligence-Enhanced Cybersecurity: Workforce Needs and Barriers to Learning
协作研究:EAGER:SaTC-EDU:人工智能增强的网络安全:劳动力需求和学习障碍
- 批准号:
2113954 - 财政年份:2021
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: A Life-Cycle Approach for Artificial Intelligence-Based Cybersecurity Education
EAGER:SaTC-EDU:基于人工智能的网络安全教育的生命周期方法
- 批准号:
2114680 - 财政年份:2021
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
- 批准号:
2114936 - 财政年份:2021
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Teaching High School Students about Cybersecurity and Artificial Intelligence Ethics via Empathy-Driven Hands-On Projects
合作研究:EAGER:SaTC-EDU:通过同理心驱动的实践项目向高中生传授网络安全和人工智能伦理知识
- 批准号:
2114991 - 财政年份:2021
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
- 批准号:
2039287 - 财政年份:2021
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant