RTG: Combinatorics, Geometry, Representation Theory, and Topology at University of Oregon
RTG:俄勒冈大学的组合学、几何学、表示论和拓扑学
基本信息
- 批准号:2039316
- 负责人:
- 金额:$ 226.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Research Training Group is led by seven faculty members at the University of Oregon whose research activities cover a wide range of topics in the fields of geometry, topology, representation theory, and combinatorics. The award will support the training of at least four postdocs and 20-30 talented graduate students and will engage up to 40 undergraduates in summer research activities. The award will also support a summer workshop series in representation theory and a regional conference series in combinatorics and related areas. These researchers will undertake a collaborative approach to the supervision and mentoring of early career mathematicians. In addition to research training, a main goal of this RTG will be to broaden participation in mathematics through several mechanisms: flexible postdoc positions built on remote strategies for training and collaboration, development of skills for graduate students by incorporating them into the university’s prison education program, collaborative mentorship strategies, and other activities, all aimed at the development of a vibrant, cohesive, and welcoming research community designed to help students and postdocs reach their full potential. The projects conducted as part of this award will primarily focus on derived categories in algebra and geometry, equivariant topology, the geometry and topology of posets, and cohomology and representation theory in positive characteristic. The project activities will foster a flow of ideas among these various subjects, with the goal of creating new bridges and connections. Vertically integrated mentorship and learning opportunities will be key components of the RTG activities, offering valuable skillsets to the early-career participants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究培训小组由俄勒冈大学的七名教员领导,他们的研究活动涵盖几何、拓扑、表示论和组合学领域的广泛主题。 该奖项将支持培训至少 4 名博士后和 20-30 名才华横溢的研究生,并将吸引多达 40 名本科生参加夏季研究活动。该奖项还将支持表示理论的夏季研讨会系列以及组合学和相关领域的区域会议系列。这些研究人员将采取协作方式来监督和指导早期职业数学家。除了研究培训之外,该 RTG 的一个主要目标是通过多种机制扩大对数学的参与:基于远程培训和协作策略的灵活博士后职位,通过将研究生纳入大学的监狱教育计划来培养研究生技能,合作指导策略和其他活动,所有这些都旨在发展一个充满活力、有凝聚力和热情的研究社区,旨在帮助学生和博士后充分发挥潜力。作为该奖项的一部分进行的项目将主要集中在代数和几何、等变拓扑、偏序集的几何和拓扑以及正特征中的上同调和表示论中的派生类别。该项目活动将促进这些不同主题之间的思想交流,目标是建立新的桥梁和联系。垂直整合的指导和学习机会将是 RTG 活动的关键组成部分,为早期职业参与者提供宝贵的技能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equivariant Kazhdan–Lusztig theory of paving matroids
- DOI:10.5802/alco.281
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Trevor K. Karn;George D. Nasr;N. Proudfoot;Lorenzo Vecchi
- 通讯作者:Trevor K. Karn;George D. Nasr;N. Proudfoot;Lorenzo Vecchi
K-rings of wonderful varieties and matroids
奇妙品种和拟阵的 K 形环
- DOI:10.1016/j.aim.2024.109554
- 发表时间:2024
- 期刊:
- 影响因子:1.7
- 作者:Larson, Matt;Li, Shiyue;Payne, Sam;Proudfoot, Nicholas
- 通讯作者:Proudfoot, Nicholas
Equivariant Log Concavity and Representation Stability
等变对数凹性和表示稳定性
- DOI:10.1093/imrn/rnab352
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Matherne, Jacob P;Miyata, Dane;Proudfoot, Nicholas;Ramos, Eric
- 通讯作者:Ramos, Eric
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Dugger其他文献
Universal Homotopy Theories
- DOI:
10.1006/aima.2001.2014 - 发表时间:
2000-07 - 期刊:
- 影响因子:1.7
- 作者:
Daniel Dugger - 通讯作者:
Daniel Dugger
Combinatorial Model Categories Have Presentations
组合模型类别有演示
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Daniel Dugger - 通讯作者:
Daniel Dugger
Gysin functors and the Grothendieck-Witt category, Part I
Gysin 函子和 Grothendieck-Witt 范畴,第一部分
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Daniel Dugger - 通讯作者:
Daniel Dugger
Daniel Dugger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Dugger', 18)}}的其他基金
Investigating connections between homotopy theory and algebra
研究同伦理论和代数之间的联系
- 批准号:
0905888 - 财政年份:2009
- 资助金额:
$ 226.08万 - 项目类别:
Standard Grant
Interactions of homotopy theory and algebra
同伦理论与代数的相互作用
- 批准号:
0604354 - 财政年份:2006
- 资助金额:
$ 226.08万 - 项目类别:
Continuing Grant
相似海外基金
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 226.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
- 批准号:
MR/W007320/2 - 财政年份:2023
- 资助金额:
$ 226.08万 - 项目类别:
Fellowship
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
- 批准号:
2246399 - 财政年份:2023
- 资助金额:
$ 226.08万 - 项目类别:
Continuing Grant
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 226.08万 - 项目类别:
Standard Grant
Quotienting by Quasisymmetrics: Combinatorics and Geometry
拟对称求商:组合学和几何
- 批准号:
2246961 - 财政年份:2023
- 资助金额:
$ 226.08万 - 项目类别:
Standard Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 226.08万 - 项目类别:
Standard Grant
Discrete Geometry and Extremal Combinatorics
离散几何和极值组合
- 批准号:
2246659 - 财政年份:2023
- 资助金额:
$ 226.08万 - 项目类别:
Standard Grant
Triangulations: linking geometry and topology with combinatorics
三角测量:用组合学将几何和拓扑联系起来
- 批准号:
DP220102588 - 财政年份:2023
- 资助金额:
$ 226.08万 - 项目类别:
Discovery Projects
CAREER: Discrete Geometry at the crossroads of Combinatorics and Topology
职业:组合学和拓扑学十字路口的离散几何
- 批准号:
2237324 - 财政年份:2023
- 资助金额:
$ 226.08万 - 项目类别:
Continuing Grant
Structure versus Randomness in Algebraic Geometry and Additive Combinatorics
代数几何和加法组合中的结构与随机性
- 批准号:
2302988 - 财政年份:2023
- 资助金额:
$ 226.08万 - 项目类别:
Standard Grant














{{item.name}}会员




