Discrete Geometry and Extremal Combinatorics
离散几何和极值组合
基本信息
- 批准号:2246659
- 负责人:
- 金额:$ 18.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project concerns several open problems at the intersection of discrete geometry and extremal combinatorics. Questions in discrete geometry traditionally involve sets of points, lines, triangles, planes, or other simple geometric objects, and many of them are tantalizingly natural and worth studying for their own sake. Some of them, such as the structure of 3-dimensional convex polytopes, go back to the antiquity, while others are also intimately connected with various different areas of modern mathematics, in particular extremal combinatorics. In recent years, these rich interactions have led to several remarkable developments between these two fields, and the goal of this project is to essentially capitalize as much as possible on this momentum. The first part of this project concerns Ramsey theory around the Erdős-Szekeres problem about the existence of large convex polytopes in finite configurations of point sets in general position, with an eye particularly towards establishing new upper bounds for various classical Ramsey numbers for graphs and hypergraphs. The second part of this proposal is about incidence geometry, an area with roots in Turán-type problems in extremal graph theory which is also fundamentally connected with other branches of mathematics, such as harmonic analysis and number theory, via the so-called sum-product phenomenon. The PI intends to further develop these connections by studying several old and new natural problems that arise on the different sides of this story. Examples of motivating (longstanding) questions include: the Zarankiewicz problem, the unit distance conjecture, and the Heilbronn triangle problem. As a byproduct, the PI also plans to develop new tools that could further the interplay between algebraic, analytic, combinatorial, and probabilistic methods in discrete mathematics. The PI plans to involve graduate students in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及离散几何和极值组合数学交叉的几个公开问题。离散几何中的问题传统上涉及一组点、直线、三角形、平面或其他简单的几何对象,其中许多问题非常自然,值得研究。它们中的一些,如三维凸多面体的结构,可以追溯到古代,而另一些也与现代数学的各个不同领域密切相关,特别是极值组合数学。近年来,这些丰富的互动导致了这两个领域之间的几个显著发展,该项目的目标是从本质上尽可能地利用这种势头。这个项目的第一部分是围绕ErdőS-Szekeres问题的Ramsey理论,该问题是关于在一般位置的点集的有限配置中存在大型凸多面体的问题,特别是着眼于建立图和超图的各种经典Ramsey数的新的上界。这一建议的第二部分是关于关联几何的,这是一个根植于极值图论中图兰型问题的领域,它也通过所谓的和积现象与调和分析和数论等其他数学分支从根本上联系在一起。PI打算通过研究这个故事不同方面出现的几个新旧自然问题来进一步发展这些联系。激励(长期存在的)问题的例子包括:Zarankiewicz问题、单位距离猜想和海尔布伦三角问题。作为副产品,PI还计划开发新的工具,以进一步促进离散数学中代数、分析、组合和概率方法之间的相互作用。PI计划让研究生参与这个项目。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Pohoata其他文献
Andrei Pohoata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Extremal problems in geometry
几何中的极值问题
- 批准号:
RGPIN-2022-03649 - 财政年份:2022
- 资助金额:
$ 18.95万 - 项目类别:
Discovery Grants Program - Individual
Extremal combinatorics meets finite geometry
极值组合满足有限几何
- 批准号:
DE190100666 - 财政年份:2019
- 资助金额:
$ 18.95万 - 项目类别:
Discovery Early Career Researcher Award
Conference on Finite Geometry and Extremal Combinatorics
有限几何与极值组合学会议
- 批准号:
1916466 - 财政年份:2019
- 资助金额:
$ 18.95万 - 项目类别:
Standard Grant
Problems in Extremal Combinatorics and Finite Geometry
极值组合学和有限几何问题
- 批准号:
1855723 - 财政年份:2019
- 资助金额:
$ 18.95万 - 项目类别:
Standard Grant
Sums of Squares: From Algebraic Geometry to Extremal Combinatorics and Quantum Entanglement
平方和:从代数几何到极值组合和量子纠缠
- 批准号:
1901950 - 财政年份:2019
- 资助金额:
$ 18.95万 - 项目类别:
Standard Grant
Spectral bounds in extremal discrete geometry
极值离散几何中的谱界
- 批准号:
414898050 - 财政年份:2018
- 资助金额:
$ 18.95万 - 项目类别:
Research Grants
Extremal problems in finite geometry
有限几何中的极值问题
- 批准号:
495774-2016 - 财政年份:2016
- 资助金额:
$ 18.95万 - 项目类别:
University Undergraduate Student Research Awards
Extremal problems in finite geometry
有限几何中的极值问题
- 批准号:
465171-2014 - 财政年份:2014
- 资助金额:
$ 18.95万 - 项目类别:
University Undergraduate Student Research Awards
Geometry and Analysis of Extremal Mappings of Finite Energy
有限能量极值映射的几何与分析
- 批准号:
1001620 - 财政年份:2010
- 资助金额:
$ 18.95万 - 项目类别:
Continuing Grant
Extremal hypergraphs, codes, designs, and combinatorial geometry
极值超图、代码、设计和组合几何
- 批准号:
0901276 - 财政年份:2009
- 资助金额:
$ 18.95万 - 项目类别:
Standard Grant














{{item.name}}会员




