EAGER: SaTC-EDU: Identifying Educational Conceptions and Challenges in Cybersecurity and Artificial Intelligence

EAGER:SaTC-EDU:确定网络安全和人工智能的教育理念和挑战

基本信息

项目摘要

Artificial intelligence (AI) has significant applications to many data-intensive emerging domains such as automated vehicles, computer-assisted medical imaging, behavior analysis, user authentication, cybersecurity, and embedded systems for smart infrastructures. However, there are unanswered questions relating to trust in AI systems. There is increasing evidence that machine learning algorithms can be maliciously manipulated to cause misclassification and false detection of objects and speech. With the growing adoption of AI-based techniques, it is therefore important to teach students the skills needed to analyze vulnerabilities in AI-based systems and how such systems may fail, as well as how to mitigate such issues to help create more trustworthy AI-based systems. This project brings together experts from the areas of education, AI, and cybersecurity to identify challenges and potential solutions to teaching topics in trustworthy AI with the goal of evolving coursework that will appeal to, and engage, a diverse student body. It is critical to diversify the workforce operating at the intersection of cybersecurity and AI because AI-based systems can be prone to implicit vulnerabilities and blind spots due to imbalanced datasets or training methods that focus only on the overall accuracy of available datasets. The project team proposes to teach and study three courses at the intersection of cybersecurity and AI, including creating a new course on trustworthy AI. Coursework will address topics that will spur students to consider how segments of the population may be differentially impacted in areas such as authentication, privacy, and user safety. Learning science and educational psychology approaches (specifically focus groups and clinical interviews) will be used to identify learning and teaching challenges and to characterize conceptions and misconceptions. The project will produce five deliverables: model curricula at the crossroads of cybersecurity and AI; strategies for managing cross-disciplinarity in such curricula; characterizations of student concepts; identification of student learning challenges; and identification of new research directions in cybersecurity and AI. The findings and curricular ideas will be disseminated broadly. This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)在许多数据密集型新兴领域有着重要的应用,如自动驾驶汽车、计算机辅助医学成像、行为分析、用户身份验证、网络安全和智能基础设施的嵌入式系统。 然而,关于人工智能系统的信任还有一些悬而未决的问题。 越来越多的证据表明,机器学习算法可能被恶意操纵,导致对物体和语音的错误分类和错误检测。随着基于人工智能的技术越来越多地被采用,因此,重要的是要教学生分析基于人工智能的系统中的漏洞所需的技能,以及这些系统如何可能失败,以及如何缓解这些问题,以帮助创建更值得信赖的基于人工智能的系统。 该项目汇集了来自教育,人工智能和网络安全领域的专家,以确定值得信赖的人工智能教学主题的挑战和潜在解决方案,其目标是发展课程,吸引并吸引多样化的学生群体。在网络安全和人工智能的交叉点上工作的劳动力多样化至关重要,因为基于人工智能的系统可能容易由于不平衡的数据集或仅关注可用数据集整体准确性的训练方法而存在隐性漏洞和盲点。项目团队建议在网络安全和人工智能的交叉点教授和研究三门课程,包括创建一门关于可信人工智能的新课程。课程将解决的主题,这将促使学生考虑如何人口的部分可能会在身份验证,隐私和用户安全等领域受到不同的影响。学习科学和教育心理学方法(特别是焦点小组和临床访谈)将用于确定学习和教学的挑战,并描述概念和误解。该项目将产生五个可交付成果:网络安全和人工智能十字路口的示范课程;管理此类课程中跨学科性的策略;学生概念的特征;确定学生学习挑战;以及确定网络安全和人工智能的新研究方向。调查结果和课程构想将广泛传播。该项目得到了安全和值得信赖的网络空间(SaTC)计划的特别倡议的支持,以促进网络安全,人工智能和教育领域之间新的,以前未探索的合作。SATC计划与联邦网络安全研究和发展战略计划和国家隐私研究战略保持一致,以保护和维护网络系统日益增长的社会和经济效益,同时确保安全和隐私。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Atul Prakash其他文献

Long-term outcome of dual site right atrial pacing in patients with drug-refractory paroxysmal versus persistent or permanent atrial fibrillation
  • DOI:
    10.1016/s0735-1097(02)80361-8
  • 发表时间:
    2002-03-06
  • 期刊:
  • 影响因子:
  • 作者:
    Sanjeev Saksena;Wen H. Lin;Atul Prakash;Artur Filipecki
  • 通讯作者:
    Artur Filipecki
Leveraging Hierarchical Feature Sharing for Efficient Dataset Condensation
利用分层特征共享实现高效数据集压缩
  • DOI:
    10.48550/arxiv.2310.07506
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haizhong Zheng;Jiachen Sun;Shutong Wu;B. Kailkhura;Z. Mao;Chaowei Xiao;Atul Prakash
  • 通讯作者:
    Atul Prakash
1008-14 Radiofrequency Catheter Ablation of Left-sided Accessory Pathways: Selection of Coronary Sinus as the Primary Approach
  • DOI:
    10.1016/0735-1097(95)92953-3
  • 发表时间:
    1995-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irakli Giorgberidze;Ryszard B. Krol;Atul Prakash;Philip Mathew;Sanjeev Saksena.
  • 通讯作者:
    Sanjeev Saksena.
COEXISTING BAG3 VARIANT AND ANOMALOUS ORIGIN OF RIGHT CORONARY ARTERY PRESENTING WITH RECURRENT VENTRICULAR TACHYCARDIA
  • DOI:
    10.1016/s0735-1097(23)02899-1
  • 发表时间:
    2023-03-07
  • 期刊:
  • 影响因子:
  • 作者:
    Ilsen E. Hernandez;Atul Prakash
  • 通讯作者:
    Atul Prakash
GRAPHITE: A Practical Framework for Generating Automatic Physical Adversarial Machine Learning Attacks
GRAPHITE:生成自动物理对抗性机器学习攻击的实用框架
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Feng;Neal Mangaokar;Jiefeng Chen;Earlence Fernandes;S. Jha;Atul Prakash
  • 通讯作者:
    Atul Prakash

Atul Prakash的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Atul Prakash', 18)}}的其他基金

CPS: Synergy: Collaborative Research: Support for Security and Safety of Programmable IoT Systems
CPS:协同:协作研究:支持可编程物联网系统的安全性
  • 批准号:
    1646392
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: USBRCCR: Collaborative: Lightweight Policy Enforcement of Information Flows in IoT Infrastructures
EAGER:USBRCCR:协作:物联网基础设施中信息流的轻量级策略执行
  • 批准号:
    1740897
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TWC: Small: Discovering and Restricting Undesirable Information Flows Between Multiple Spheres of Activities
TWC:小型:发现并限制多个活动领域之间的不良信息流
  • 批准号:
    1318722
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TC: Small: Capsule: Safely Accessing Confidential Data in a Low-Integrity Environment
TC:小:胶囊:在低完整性环境中安全访问机密数据
  • 批准号:
    0916126
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RI: An Infrastructure for Wide Area Pervasive Computing
RI:广域普适计算的基础设施
  • 批准号:
    0303587
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ITR: A Mobile Component Framework for Building Adaptive Distributed Applications
ITR:用于构建自适应分布式应用程序的移动组件框架
  • 批准号:
    0082851
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Distributed Simulation of Large Systems
大型系统的分布式仿真
  • 批准号:
    8909674
  • 财政年份:
    1989
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
  • 批准号:
    2335807
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
  • 批准号:
    2335624
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
  • 批准号:
    2039289
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm
EAGER:SaTC-EDU:人工智能时代的网络安全教育:一种新颖的主动协作学习范式
  • 批准号:
    2114974
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Transformative Educational Approaches to Meld Artificial Intelligence and Cybersecurity Mindsets
EAGER:SaTC-EDU:融合人工智能和网络安全思维的变革性教育方法
  • 批准号:
    2115025
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Artificial Intelligence-Enhanced Cybersecurity: Workforce Needs and Barriers to Learning
协作研究:EAGER:SaTC-EDU:人工智能增强的网络安全:劳动力需求和学习障碍
  • 批准号:
    2113954
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: A Life-Cycle Approach for Artificial Intelligence-Based Cybersecurity Education
EAGER:SaTC-EDU:基于人工智能的网络安全教育的生命周期方法
  • 批准号:
    2114680
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
  • 批准号:
    2114936
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Teaching High School Students about Cybersecurity and Artificial Intelligence Ethics via Empathy-Driven Hands-On Projects
合作研究:EAGER:SaTC-EDU:通过同理心驱动的实践项目向高中生传授网络安全和人工智能伦理知识
  • 批准号:
    2114991
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
  • 批准号:
    2039287
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了