EAGER: Towards molecular scale resolution in studies of the anomalous motion of nanoparticles using liquid phase electron microscopy

EAGER:使用液相电子显微镜研究纳米颗粒的异常运动,实现分子尺度分辨率

基本信息

  • 批准号:
    2039624
  • 负责人:
  • 金额:
    $ 13.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

Understanding how small particles move in a fluid near a surface is important for many scientific areas, such as biophysics and colloidal self-assembly. This phenomenon is also relevant to many major emerging technologies, from biomolecular separations to three-dimensional additive manufacturing. For nanometer-sized particles, the ability to capture images of these motions has been extremely limited. Liquid cell transmission electron microscopy is a new technique that has great potential to overcome this limitation, provided it can first be validated with simple model systems. This research project aims to study the motion of nanoparticles near a liquid-solid interface, to classify the type of motion of these particles, and to develop physics-based theoretical models that explain the motion of these particles close to a surface. This knowledge gained from this research project will advance our understanding of how nanoparticles move close to a surface, which presents challenges in many fields including biology, geology, and chemical processing. Through this project a diverse group of undergraduate students will work collaboratively under the guidance of the more senior project participants. These students will learn how to use new data science tools to analyze collected microscopy images and videos.Understanding the motions of nanoparticles in a fluid and close to a surface is of fundamental importance in physics and chemistry. A common method to characterize these motions has been through optical microscopy, which naturally imposes spatial resolution limitations on dynamics. The advent of liquid cell transmission electron microscopy has made it possible to study the nanoscale motion of particles near various surfaces, in the liquid environment, and with high spatial resolution. This research project will investigate the anomalous diffusive motion of a simple and tunable model system of gold nanoparticles in aqueous environments near the silicon nitride membrane of a transmission electron microscope’s liquid cell. Specific aims include i) studying the effect of electron beam dose rate on the anomalous diffusion of gold nanoparticles in in-situ liquid cell transmission electron microscopy. This aim will be accomplished by measuring the trajectories of large numbers of nanoparticles at different electron beam dose rates; ii) exploiting the large scale in-situ microscopy data collected from particle trajectories in time and classifying the type of diffusive motion using deep neural networks; and iii) developing Langevin-based theoretical models to capture the distinctive diffusive characteristics that happen across multiple timescales and to relate the local rheological material properties to the type of motion in the liquid cell environment. If successful, this research would facilitate a new way to study the motion of a nanoparticle close to a surface and thereby advance fundamental understanding of the behavior of matter on the nanometer scale. Such knowledge would also enable the mechanism-guided design of experiments and systems in a wide range of scientific fields including crystallization, biomedical drug delivery, rheology, chemical separations, and additive manufacturing research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解微小颗粒如何在靠近表面的流体中运动对许多科学领域都很重要,例如生物物理学和胶体自组装。这一现象也与许多重大新兴技术有关,从生物分子分离到三维加法制造。对于纳米粒子来说,捕捉这些运动的图像的能力一直非常有限。液体细胞透射式电子显微镜是一种新技术,它具有克服这一局限性的巨大潜力,前提是它可以首先用简单的模型系统进行验证。该研究项目旨在研究纳米粒子在液-固界面附近的运动,对这些粒子的运动类型进行分类,并开发基于物理的理论模型来解释这些粒子在表面附近的运动。从这项研究项目中获得的知识将促进我们对纳米颗粒如何接近表面的理解,这在许多领域都提出了挑战,包括生物学、地质学和化学加工。通过这个项目,一群不同的本科生将在更资深的项目参与者的指导下合作。这些学生将学习如何使用新的数据科学工具来分析收集的显微镜图像和视频。了解纳米粒子在流体中和接近表面的运动在物理和化学中具有基本的重要性。描述这些运动的一种常见方法是通过光学显微镜,这自然地对动力学施加了空间分辨率限制。液体细胞透射式电子显微镜的出现使得研究液体环境中各种表面附近粒子的纳米尺度运动成为可能,并且具有很高的空间分辨率。本研究项目将研究一个简单且可调的金纳米粒子模型系统在透射式电子显微镜液晶盒的氮化硅薄膜附近的水环境中的异常扩散运动。具体目标包括:1)研究电子束剂量率对原位液细胞透射电子显微镜中金纳米粒子反常扩散的影响。这一目标将通过测量不同电子束剂量率下大量纳米粒子的轨迹来实现;ii)利用从粒子轨迹收集的大规模原位显微镜数据,并使用深度神经网络对扩散运动的类型进行分类;iii)开发基于朗之万理论的模型,以捕获跨多个时间尺度发生的独特扩散特征,并将局部流变材料属性与液体细胞环境中的运动类型联系起来。如果成功,这项研究将促进一种新的方法来研究纳米粒子在表面附近的运动,从而促进对纳米尺度上物质行为的基本理解。这些知识还将使广泛科学领域的实验和系统的机制指导设计成为可能,包括结晶、生物医学药物输送、流变学、化学分离和添加剂制造研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Odd Diffusivity of Chiral Random Motion
  • DOI:
    10.1103/physrevlett.127.178001
  • 发表时间:
    2021-10-22
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Hargus, Cory;Epstein, Jeffrey M.;Mandadapu, Kranthi K.
  • 通讯作者:
    Mandadapu, Kranthi K.
Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Armand Alivisatos其他文献

Armand Alivisatos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Armand Alivisatos', 18)}}的其他基金

Understanding epitaxial nanocrystal attachment processes across length scales with the aim of designing defect-free interfaces
了解跨长度尺度的外延纳米晶体附着过程,旨在设计无缺陷的界面
  • 批准号:
    1808151
  • 财政年份:
    2018
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Standard Grant
Collaborative Proposal -- ITR/SY Molecular Computational with Automated Microfluidic Sensors (MCAMS)
合作提案——ITR/SY 分子计算与自动化微流控传感器 (MCAMS)
  • 批准号:
    0121368
  • 财政年份:
    2001
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Continuing Grant
The Fabrication and Physical Properties of Integrated Metal and Semiconductor Nanocrystal Systems
集成金属和半导体纳米晶体系统的制造和物理性能
  • 批准号:
    9726597
  • 财政年份:
    1998
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Continuing Grant
Surface Science of Semiconductor Nanocrystals
半导体纳米晶体的表面科学
  • 批准号:
    9505302
  • 财政年份:
    1995
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award
总统青年研究员奖
  • 批准号:
    9057186
  • 财政年份:
    1990
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Continuing Grant
Electronic Structure of Large Semiconductor Clusters
大型半导体簇的电子结构
  • 批准号:
    8917969
  • 财政年份:
    1990
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Standard Grant

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Standard Grant
Towards a molecular fingerprint for human-specific endogenous retroviruses
人类特异性内源性逆转录病毒的分子指纹
  • 批准号:
    DE240100707
  • 财政年份:
    2024
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Discovery Early Career Researcher Award
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
  • 批准号:
    10734397
  • 财政年份:
    2023
  • 资助金额:
    $ 13.01万
  • 项目类别:
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
  • 批准号:
    10737969
  • 财政年份:
    2023
  • 资助金额:
    $ 13.01万
  • 项目类别:
Precision Spectroscopy of Fullerenes: Towards Resolving Astrophysical Molecular Complexity
富勒烯的精密光谱学:解决天体物理分子复杂性
  • 批准号:
    2307443
  • 财政年份:
    2023
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Standard Grant
Advanced measurement for unveiling hierarchical quasiparticles towards renovating molecular materials research
揭示分级准粒子的先进测量,以革新分子材料研究
  • 批准号:
    23H05461
  • 财政年份:
    2023
  • 资助金额:
    $ 13.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
  • 批准号:
    10606459
  • 财政年份:
    2023
  • 资助金额:
    $ 13.01万
  • 项目类别:
A Fullerene-based Molecular Route towards Designer Nanoparticles
基于富勒烯的设计纳米粒子的分子路线
  • 批准号:
    10713377
  • 财政年份:
    2023
  • 资助金额:
    $ 13.01万
  • 项目类别:
Deciphering the complex pharmacology of CB1: towards the understanding of a third signaling pathway
解读 CB1 的复杂药理学:了解第三条信号通路
  • 批准号:
    10667865
  • 财政年份:
    2023
  • 资助金额:
    $ 13.01万
  • 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
  • 批准号:
    10906499
  • 财政年份:
    2023
  • 资助金额:
    $ 13.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了