EAGER: Integrating animal movement ecology and multi-level social networks to investigate zoonotic disease dynamics

EAGER:整合动物运动生态学和多层次社交网络来研究人畜共患疾病动态

基本信息

  • 批准号:
    2039769
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project measures and models movement and social interactions in two bat species and how these behaviors may influence spread of bat coronaviruses, such as SARS-CoV-2, the virus that causes COVID-19, among bats and between bats and humans. Zoonotic diseases, such as bubonic plague, Lyme disease, flu, Ebola, rabies, and COVID-19, are caused by pathogens transmitted from animals to people, with devastating effects on humans. Not all potentially zoonotic pathogens will emerge into humans, however, in part because movements of animals and their social interactions with each other and with humans affect the transmission and spread of pathogens. It is, therefore, important to know more about behaviors of animals that are potential sources of zoonotic diseases so that disease dynamics can be better understood and predicted. Viruses will be identified by molecular techniques in bats in the desert southwest of the United States, and the same bats will be followed with GPS trackers and radio-frequency identification (RFID) tags (the same “microchips” used to identify pets) to understand flight patterns when out of their roosts and contacts among bats within roosts (“contact tracing”). The information obtained will be useful for predicting the spread of viruses in bats, and is of relevance to SARS-CoV-2 should it ever “spill back” from people to North American bats. The broader impacts of this work include a collaboration with a local science education group to educate middle-school students about zoonotic diseases and epidemiology. The project will also provide opportunities for training of undergraduate and graduate students at New Mexico State University, a Hispanic-Serving Institution. Research at the intersection of animal movement, social behavior, and disease ecology is key to understanding the dynamics of zoonotic diseases within animal hosts. How animals move through their environments and how they interact with both conspecifics and heterospecifics can influence the transmission and spread of zoonoses. This project will investigate how animal movement and multi-species host social network contacts shape risk of transmission of both endemic coronaviruses and potentially the novel coronavirus SARS-CoV-2 within and among North American bat species. This work is facilitated by ever-smaller animal tracking devices and advances in pathogen detection using genomic techniques, allowing the research team to characterize the movements, social interactions, and “viromes” of individual bats through time. By repeatedly sampling bat viromes, the researchers will determine which viral strains are harbored by individual bats through time. North American bats host multiple coronavirus strains, and there is a risk that SARS-CoV-2 may “spillback” from humans into bats. The researchers will also characterize the movements of individual bats using GPS tracking, and will use contacts among RFID-tagged bats and fluorescent-powder tracking to construct multi-species social networks for bats that share a roost. Integrating the movement and social behavior of bats with their viromes will advance our understanding of within-host dynamics of zoonotic pathogens. Undergraduate and graduate students will be involved in the research, and educational resources targeted to middle schools will help students whose lives have been disrupted by the COVID-19 pandemic understand the origins of zoonotic diseases and basic concepts in epidemiology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目测量和模拟了两种蝙蝠的运动和社会互动,以及这些行为如何影响蝙蝠冠状病毒(如导致COVID-19的病毒SARS-CoV-2)在蝙蝠之间以及蝙蝠与人之间的传播。人畜共患疾病,如黑死病、莱姆病、流感、埃博拉、狂犬病和COVID-19,都是由从动物传播给人的病原体引起的,对人类具有破坏性影响。然而,并非所有潜在的人畜共患病原体都会进入人类,部分原因是动物的运动及其相互之间和与人类的社会互动会影响病原体的传播和传播。因此,重要的是要更多地了解作为人畜共患疾病潜在来源的动物行为,以便更好地了解和预测疾病动态。病毒将通过分子技术在美国西南部沙漠中的蝙蝠身上进行识别,同样的蝙蝠将被GPS追踪器和射频识别(RFID)标签(与用于识别宠物的“微芯片”相同)跟踪,以了解蝙蝠离开栖息地时的飞行模式和栖息地内蝙蝠之间的接触(“接触追踪”)。获得的信息将有助于预测病毒在蝙蝠中的传播,并且如果SARS-CoV-2从人类“溢出”到北美蝙蝠,则与之相关。这项工作的更广泛影响包括与当地一个科学教育小组合作,向中学生传授人畜共患疾病和流行病学知识。该项目还将提供在新墨西哥州立大学培训本科生和研究生的机会,这是一所为西班牙裔服务的机构。动物运动、社会行为和疾病生态学交叉研究是理解动物宿主内人畜共患疾病动态的关键。动物如何在其环境中移动以及它们如何与同种和异种动物相互作用可以影响人畜共患病的传播和传播。该项目将调查动物运动和多物种宿主社会网络接触如何影响地方性冠状病毒和潜在的新型冠状病毒SARS-CoV-2在北美蝙蝠物种内部和之间传播的风险。越来越小的动物跟踪设备和使用基因组技术的病原体检测技术的进步促进了这项工作,使研究小组能够描述单个蝙蝠随时间的运动、社会互动和“病毒组”。通过对蝙蝠病毒组进行反复采样,研究人员将确定个体蝙蝠长期携带的病毒株。北美蝙蝠携带多种冠状病毒株,并且存在SARS-CoV-2可能从人类“溢出”到蝙蝠的风险。研究人员还将使用GPS跟踪来描述单个蝙蝠的运动特征,并将使用带有rfid标签的蝙蝠之间的接触和荧光粉跟踪来构建共享栖息地的蝙蝠的多物种社会网络。将蝙蝠的运动和社会行为与它们的病毒组结合起来,将促进我们对人畜共患病原体在宿主内动力学的理解。本科生和研究生将参与研究,针对中学的教育资源将帮助受COVID-19大流行影响的学生了解人畜共患疾病的起源和流行病学的基本概念。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Mabry其他文献

Karen Mabry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Mabry', 18)}}的其他基金

MCA: Using multilayer-network analysis to link the social and physical processes that underlie natal dispersal
MCA:使用多层网络分析将出生扩散背后的社会和物理过程联系起来
  • 批准号:
    2120988
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Integrating single-cell connectivity, gene expression, and function in zebra finches
整合斑胸草雀的单细胞连接、基因表达和功能
  • 批准号:
    10657971
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Integrating brain and behavioral measures of central pain inhibition to personalize treatment in chronic pain management
整合中枢疼痛抑制的大脑和行为测量,以实现慢性疼痛管理的个性化治疗
  • 批准号:
    10448932
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Integrating brain and behavioral measures of central pain inhibition to personalize treatment in chronic pain management
整合中枢疼痛抑制的大脑和行为测量,以实现慢性疼痛管理的个性化治疗
  • 批准号:
    10597113
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Krabbe disease therapy integrating gene transfer with lectin-enhanced enzyme delivery to treat pathologies of the CNS
克拉伯病疗法将基因转移与凝集素增强酶递送相结合,以治疗中枢神经系统疾病
  • 批准号:
    10547167
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Cannabis' Impact on Alcohol Consumption: Integrating Laboratory and Ecological Momentary Assessment Methods
大麻对酒精消费的影响:整合实验室和生态瞬时评估方法
  • 批准号:
    10339931
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Circuitry dynamics underlying opioid-dependence: Integrating structural, functional, and transcriptomic mechanisms
阿片类药物依赖性的电路动力学:整合结构、功能和转录组机制
  • 批准号:
    10509750
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Integrating functional proteomics, genome engineering, and live-cell microscopy to the study of ciliopathies
将功能蛋白质组学、基因组工程和活细胞显微镜集成到纤毛病的研究中
  • 批准号:
    10550028
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Cannabis' Impact on Alcohol Consumption: Integrating Laboratory and Ecological Momentary Assessment Methods
大麻对酒精消费的影响:整合实验室和生态瞬时评估方法
  • 批准号:
    10595096
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Integrating functional proteomics, genome engineering, and live-cell microscopy to the study of ciliopathies
将功能蛋白质组学、基因组工程和活细胞显微镜集成到纤毛病的研究中
  • 批准号:
    10705217
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer
muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解
  • 批准号:
    10415579
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了