Collaborative Research: SaTC: TTP: Small: DeFake: Deploying a Tool for Robust Deepfake Detection

协作研究:SaTC:TTP:小型:DeFake:部署强大的 Deepfake 检测工具

基本信息

  • 批准号:
    2040209
  • 负责人:
  • 金额:
    $ 38.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Deepfakes – videos that are generated or manipulated by artificial intelligence – pose a major threat for spreading disinformation, threatening blackmail, and new forms of phishing. They are already widely used in creating non-consensual pornography, and have begun to be used to undermine governments and elections. Even the threat of deepfakes has cast doubts on the authenticity of videos in the news. Journalists, who have a key role in verifying information, especially need help to deal with ever-improving deepfake technology. Recent results on detecting deepfakes are promising, with close to 100% accuracy in lab tests, but few systems are available for real-world use. It is critical to move beyond accuracy on curated datasets and address the needs of journalists who could benefit from these advances.The objective of this transition-to-practice project is to develop the DeFake tool, a system that utilizes advanced machine learning to help journalists detect deepfakes in a way that is robust, intuitive, and provides results that are explainable to the general public. To meet this objective, the project team is engaged in four main tasks: (1) Making the tool robust to new types of deepfakes, and having it show users why a video is fake; (2) Protecting the tool from adversarial examples – small perturbations to a video that are specially crafted to fool detection systems; (3) Working with journalists to understand what they need from the tool, and building an online community to discuss deepfakes and their detection; and (4) Integrating advances from the other tasks into a stable, efficient, and useful tool, and actively disseminating this tool to journalists. The project team is also leveraging visually interesting deepfakes to develop engaging education and outreach efforts, such as a museum-style exhibit on deepfake detection meant for broad audiences of all ages.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Deepfakes -由人工智能生成或操纵的视频-对传播虚假信息,威胁勒索和新形式的网络钓鱼构成了重大威胁。它们已经被广泛用于制作未经同意的色情作品,并开始被用来破坏政府和选举。即使是deepfakes的威胁也让人们对新闻中视频的真实性产生了怀疑。记者在核实信息方面发挥着关键作用,他们尤其需要帮助来应对不断改进的deepfake技术。最近在检测deepfake方面的结果很有希望,在实验室测试中的准确率接近100%,但很少有系统可用于现实世界。我们的目标是开发DeFake工具,这是一个利用先进的机器学习技术帮助记者以一种稳健、直观的方式检测deepfake的系统,并提供可向公众解释的结果。为了实现这一目标,项目团队主要负责四项任务:(1)使该工具对新类型的deepfake具有鲁棒性,并向用户展示为什么视频是假的;(2)保护该工具免受对抗性示例的影响-对视频的小干扰,这些干扰是专门为欺骗检测系统而设计的;(3)与记者合作,了解他们需要从工具中获得什么,并建立一个在线社区,讨论deepfake及其检测;(4)将其他工作的进展整合成一个稳定、有效和有用的工具,并积极向记者传播这一工具。该项目团队还利用视觉上有趣的deepfake来开发吸引人的教育和推广工作,例如针对所有年龄段的广泛观众的博物馆式deepfake检测展览。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating Robustness of Sequence-based Deepfake Detector Models by Adversarial Perturbation
Gradient Frequency Modulation for Visually Explaining Video Understanding Models
用于视觉解释视频理解模型的梯度频率调制
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Wright其他文献

Towards Machine Learning of Expressive Microtiming in Brazilian Drumming
巴西鼓乐中富有表现力的微计时的机器学习
Unravelling the prognostic effect of <em>IKZF1</em> deletions and <em>IGH@-CRLF2</em> in adult acute lymphoblastic leukaemia
  • DOI:
    10.1097/pat.0b013e3283653bd1
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    John O’Reilly;Lisa J. Russell;Julian Cooney;Hannah M. Ensor;Duncan Purtill;Matthew Wright;Anthony V. Moorman
  • 通讯作者:
    Anthony V. Moorman
Strike three for the 8p11 – an illustrative case of variable clinical presentations in a patient with myeloid/lymphoid neoplasms with FGFR1 rearrangement
  • DOI:
    10.1016/j.pathol.2023.12.353
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Caitlin Rice;Paul Cannell;Rebecca De Kraa;Matthew Wright;Hun Chuah
  • 通讯作者:
    Hun Chuah
229 Epicardial VT Ablation: A Multicentre Safety Study
  • DOI:
    10.1016/s1878-6480(10)70231-7
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Frederic Sacher;Philippe Maury;Usha Tedrow;Isabelle Nault;Antoine Deplagne;Pierre Bordachar;Nicolas Derval;Meleze Hocini;Philippe Ritter;Sylvain Ploux;Alexandre Duparc;Matthew Wright;Jacques Clémenty;Michel Haissaguerre;William Stevenson;Pierre Jais
  • 通讯作者:
    Pierre Jais
Does the leap-for-distance test correlate with short sprint performance in young soccer players? A between- and within-player analysis
跳跃距离测试与年轻足球运动员的短距离冲刺表现相关吗?
  • DOI:
    10.36905/jses.2023.03.02
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mihkel M. Laas;Matthew Wright;Shaun McLaren;M. Portas;Guy Parkin;Daniel Eaves
  • 通讯作者:
    Daniel Eaves

Matthew Wright的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Wright', 18)}}的其他基金

Developing Nanoscale Passivation Layers for Tandem Solar Cell Interfaces: Towards Terawatt-Scale Solar PV
开发串联太阳能电池接口的纳米级钝化层:迈向太瓦级太阳能光伏
  • 批准号:
    EP/Y027884/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Fellowship
SaTC: CORE: Medium: Collaborative: BaitBuster 2.0: Keeping Users Away From Clickbait
SaTC:核心:媒介:协作:BaitBuster 2.0:让用户远离点击诱饵
  • 批准号:
    1949694
  • 财政年份:
    2020
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Standard Grant
RUI: Atomic Physics with Rapidly Frequency Chirped Laser Light
RUI:使用快速频率啁啾激光的原子物理学
  • 批准号:
    1803837
  • 财政年份:
    2018
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Adversarial ML in Traffic Analysis
SaTC:核心:小型:流量分析中的对抗性机器学习
  • 批准号:
    1816851
  • 财政年份:
    2018
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Standard Grant
TTP: Small: Collaborative: Defending Against Website Fingerprinting in Tor
TTP:小:协作:防御 Tor 中的网站指纹识别
  • 批准号:
    1619067
  • 财政年份:
    2016
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Standard Grant
TTP: Small: Collaborative: Defending Against Website Fingerprinting in Tor
TTP:小:协作:防御 Tor 中的网站指纹识别
  • 批准号:
    1722743
  • 财政年份:
    2016
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Standard Grant
Computation and Visualization of Multi-Parameter Topological Invariants of Data
数据多参数拓扑不变量的计算和可视化
  • 批准号:
    1606967
  • 财政年份:
    2015
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Standard Grant
Computation and Visualization of Multi-Parameter Topological Invariants of Data
数据多参数拓扑不变量的计算和可视化
  • 批准号:
    1521552
  • 财政年份:
    2015
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: ReDS: Reputation for Directory Services in P2P Systems
NetS:小型:协作研究:ReDS:P2P 系统中目录服务的声誉
  • 批准号:
    1117866
  • 财政年份:
    2011
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Standard Grant
CAREER: anon.next: Privacy-Enabled Routing in the Next-Generation Internet
职业:anon.next:下一代互联网中的隐私路由
  • 批准号:
    0954133
  • 财政年份:
    2010
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了