NSF Convergence Accelerator Track D: Data & AI Methods for Modeling Facial Expressions in Language with Applications to Privacy for the Deaf, ASL Education & Linguistic Res

NSF 融合加速器轨道 D:数据

基本信息

  • 批准号:
    2040638
  • 负责人:
  • 金额:
    $ 96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. American Sign Language (ASL) is the third most studies “foreign” language in the United States. This project is building 4-dimensional face-tracking algorithms that could be used to separate facial geometry from facial movement and expression. The work supports an application for teaching American Sign Language (ASL) to ASL-learners, an application for anonymizing the signer when privacy is a concern, and research into the role of facial expressions in both sign and spoken language. The privacy preserving application being developed by this project will enable ASL speakers to have private conversations about sensitive topics they would otherwise. This team of linguists, computer scientists, deaf and hearing experts on ASL, and industry partners will address research and societal challenges through three types of deliverables targeted to diverse user and research communities: 1) Modifications and extension of AI methods and publicly shared ASL data and tools to encompass spoken language. Although facial expressions and head gestures, essential to the grammar of signed languages, also play an important role in speech, this is not well understood because resources of the kind developed by this project have not been available. New data and analyses will open the door to comparative study of the role of facial expressions across modalities, and the role of facial expressions in signed language vs. spoken language. Shared raw data, analyses, and visualizations will open up new avenues for linguistic and computer science research into the role of spatiotemporal synchronization of nonmanual expressions in conjunction with speech and signing. 2) An application to help ASL learners produce facial expressions and head gestures to convey grammatical information in signed languages; and 3) Development of a tool for real-time anonymization of ASL videos to preserve grammatical information expressed non-manually, while de-identifying the signer.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以使用为灵感,以团队为基础,多学科的努力,以应对国家重要性的挑战,并将在不久的将来为社会提供有价值的成果。美国手语(ASL)是美国第三大学习“外国”语言。该项目正在构建4维面部跟踪算法,可用于将面部几何形状与面部运动和表情分开。这项工作支持美国手语(ASL)教学的应用程序,美国手语学习者,匿名签名时,隐私是一个问题的应用程序,并研究面部表情在手语和口语中的作用。该项目正在开发的隐私保护应用程序将使美国手语发言者能够就敏感话题进行私人对话。该团队由语言学家、计算机科学家、ASL聋人和听力专家以及行业合作伙伴组成,将通过针对不同用户和研究社区的三种交付成果来应对研究和社会挑战:1)修改和扩展人工智能方法以及公开共享的ASL数据和工具,以涵盖口语。虽然面部表情和头部姿势对手语的语法至关重要,在言语中也起着重要作用,但人们对这一点还没有很好的理解,因为还没有得到该项目开发的这类资源。新的数据和分析将为比较研究面部表情在各种形式中的作用以及面部表情在手语与口语中的作用打开大门。共享的原始数据、分析和可视化将为语言学和计算机科学研究开辟新的途径,研究非手动表达与语音和手势的时空同步作用。2)一个应用程序,以帮助美国手语学习者产生面部表情和头部姿势,以传达语法信息的手语;以及3)开发用于ASL视频的实时匿名化的工具,以保存非手动表达的语法信息,而德-该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为是值得支持的。影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isolated Sign Recognition using ASL Datasets with Consistent Text-based Gloss Labeling and Curriculum Learning
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konstantinos M. Dafnis;Evgenia Chroni;C. Neidle;Dimitris N. Metaxas
  • 通讯作者:
    Konstantinos M. Dafnis;Evgenia Chroni;C. Neidle;Dimitris N. Metaxas
ASL Video Corpora & Sign Bank: Resources Available through the American Sign Language Linguistic Research Project (ASLLRP)
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Neidle;Augustine Opoku;Dimitris N. Metaxas
  • 通讯作者:
    C. Neidle;Augustine Opoku;Dimitris N. Metaxas
American Sign Language Video Anonymization to Support Online Participation of Deaf and Hard of Hearing Users
Understanding ASL Learners’ Preferences for a Sign Language Recording and Automatic Feedback System to Support Self-Study
了解 ASL 学习者对支持自学的手语录音和自动反馈系统的偏好
Resources for Computer-Based Sign Recognition from Video, and the Criticality of Consistency of Gloss Labeling across Multiple Large ASL Video Corpora
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Neidle;Augustine Opoku;Carey M. Ballard;Konstantinos M. Dafnis;Evgenia Chroni;Dimitris N. Metaxas
  • 通讯作者:
    C. Neidle;Augustine Opoku;Carey M. Ballard;Konstantinos M. Dafnis;Evgenia Chroni;Dimitris N. Metaxas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitris Metaxas其他文献

A frame-based model for large manufacturing databases
Algorithmic issues in modeling motion
运动建模中的算法问题
  • DOI:
    10.1145/592642.592647
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pankaj K. Agarwal;Leonidas J. Guibas;H. Edelsbrunner;Jeff Erickson;M. Isard;Sariel Har;J. Hershberger;Christian Jensen;L. Kavraki;Patrice Koehl;Ming Lin;Dinesh Manocha;Dimitris Metaxas;Brian Mirtich;David Mount;S. Muthukrishnan;Dinesh Pai;E. Sacks;J. Snoeyink;Subhash Suri;Ouri E. Wolfson;Merl Mirtich@merl Com
  • 通讯作者:
    Merl Mirtich@merl Com
A combustion-based technique for fire animation and visualization
  • DOI:
    10.1007/s00371-007-0162-3
  • 发表时间:
    2007-06-28
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Kyungha Min;Dimitris Metaxas
  • 通讯作者:
    Dimitris Metaxas
Multi-Stage Feature Fusion Network for Video Super-Resolution
用于视频超分辨率的多级特征融合网络
  • DOI:
    10.1109/tip.2021.3056868
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Huihui Song;Wenjie Xu;Dong Liu;Bo Liu;Qingshan Liu;Dimitris Metaxas
  • 通讯作者:
    Dimitris Metaxas
The Traffic Calming Effect of Delineated Bicycle Lanes
划定自行车道的交通平静效果
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hannah Younes;Clinton Andrews;Robert B. Noland;Jiahao Xia;Song Wen;Wenwen Zhang;Dimitris Metaxas;Leigh Ann Von Hagen;Jie Gong
  • 通讯作者:
    Jie Gong

Dimitris Metaxas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitris Metaxas', 18)}}的其他基金

Center: IUCRC Phase II Rutgers University: Center for Accelerated and Real Time Analytics (CARTA)
中心:IUCRC 第二阶段 罗格斯大学:加速和实时分析中心 (CARTA)
  • 批准号:
    2310966
  • 财政年份:
    2023
  • 资助金额:
    $ 96万
  • 项目类别:
    Continuing Grant
Collaborative Research: HCC: Medium: Linguistically-Driven Sign Recognition from Continuous Signing for American Sign Language (ASL)
合作研究:HCC:媒介:美国手语 (ASL) 连续手语中语言驱动的手语识别
  • 批准号:
    2212301
  • 财政年份:
    2022
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track H: AI-based Tools to Enhance Access and Opportunities for the Deaf
NSF 融合加速器轨道 H:基于人工智能的工具,增强聋人的获取和机会
  • 批准号:
    2235405
  • 财政年份:
    2022
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Scalable Integration of Data-Driven and Model-Based Methods for Large Vocabulary Sign Recognition and Search
CHS:中:协作研究:用于大词汇量符号识别和搜索的数据驱动和基于模型的方法的可扩展集成
  • 批准号:
    1763523
  • 财政年份:
    2018
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
Phase 1 IUCRC Rutgers-New Brunswick: Center for Accelerated Real Time Analytics (CARTA)
第一阶段 IUCRC 罗格斯-新不伦瑞克:加速实时分析中心 (CARTA)
  • 批准号:
    1747778
  • 财政年份:
    2018
  • 资助金额:
    $ 96万
  • 项目类别:
    Continuing Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1733843
  • 财政年份:
    2017
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
CHS: Medium: Data Driven Biomechanically Accurate Modeling of Human Gait on Unconstrained Terrain
CHS:中:数据驱动的无约束地形上人类步态的生物力学精确建模
  • 批准号:
    1703883
  • 财政年份:
    2017
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Data Visualizations for Linguistically Annotated, Publicly Shared, Video Corpora for American Sign Language (ASL)
EAGER:协作研究:美国手语 (ASL) 语言注释、公开共享视频语料库的数据可视化
  • 批准号:
    1748022
  • 财政年份:
    2017
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
  • 批准号:
    1513373
  • 财政年份:
    2015
  • 资助金额:
    $ 96万
  • 项目类别:
    Continuing Grant
EAGER: Multi-modal human gait experimentation and analysis on unconstrained terrains
EAGER:无约束地形上的多模式人类步态实验和分析
  • 批准号:
    1451292
  • 财政年份:
    2014
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
  • 批准号:
    2344426
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
  • 批准号:
    2344174
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
  • 批准号:
    2344228
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了