AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures

AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构

基本信息

  • 批准号:
    1733843
  • 负责人:
  • 金额:
    $ 26.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The interiors of ventricles of a human heart are spanned by a fine net of muscle fibers that are difficult to resolve, even in high resolution CT images. An accurate account of these structures, however, could improve diagnosis of cardiac disease, evaluation of cardiac function, assessment of stroke risk, and simulation of cardiac blood flow. Topology is the branch of abstract mathematics that deals with connections; this project uses the theory of persistent homology to identify crucial topological handles that can be useful for accurate reconstruction and analysis of the complex cardiac dynamics from these CT images. The outcome of the project will not only advance our understanding of cardiac function, but also generate novel computational topology methods that are more efficient and effective for practical applications. This project not only bridges the gap between the theory of computational topology and the practical problem of cardiac image analysis, but also trains the next generation of researchers and educators to do so by a carefully integrated education plan. The PIs will engage undergraduate students, high school students, women and other underrepresented students in their proposed research.The goal of this project is to develop a topological approach to unveil the intrinsic structures from complex and dynamic 3D/4D cardiac data, and furthermore, to provide principled tools to quantitatively analyze these structures. The PIs will create new computational topology methodologies and algorithms to extract rich information from the intrinsic structure of cardiac data. They will develop novel methodologies to extract localized topological features and to track them based on their spatial and temporal coherence. They also plan to design new algorithms to untangle ambiguous and uncertain situations for tracking structures through time sequence data. The resulting techniques and software will be validated on cardiac CT data to produce quantitative assessments of accuracy and to characterize the advantages and limitations of these approaches. Domain experts will validate the quality of the approaches via scientific hypotheses and data exploration. The methods to be developed are general and will impact other scientific fields where intrinsic complex and dynamic structures exist.
即使在高分辨率的CT图像中,也难以解决的肌肉纤维的细网跨越了人心脏的内部。 然而,对这些结构的准确说明可以改善心脏病的诊断,心脏功能的评估,中风风险评估以及对心脏血流的模拟。拓扑是处理连接的抽象数学分支。该项目使用持久同源性理论来识别至关重要的拓扑处理,这对于精确重建和分析了这些CT图像的复杂心脏动力学。该项目的结果不仅会提高我们对心脏功能的理解,而且还会产生新颖的计算拓扑方法,这些方法对实际应用更有效,有效。该项目不仅弥合了计算拓扑理论与心脏图像分析的实际问题之间的鸿沟,而且还培训了下一代研究人员和教育工作者,通过精心整合的教育计划来做到这一点。 PI将参与本科生,高中生,妇女和其他代表性不足的学生参与其拟议的研究。该项目的目的是开发一种拓扑方法,以揭示从复杂而动态的3D/4D心脏数据的内在结构,以及提供定量分析这些结构的原始工具。 PI将创建新的计算拓扑方法和算法,以从心脏数据的内在结构中提取丰富的信息。他们将开发出新的方法来提取局部拓扑特征,并根据它们的空间和时间连贯性跟踪它们。他们还计划设计新的算法,以使歧义和不确定的情况毫无障碍,以通过时间序列数据跟踪结构。最终的技术和软件将在心脏CT数据上进行验证,以产生准确性的定量评估,并表征这些方法的优势和局限性。领域专家将通过科学假设和数据探索来验证方法的质量。要开发的方法是一般的,将影响存在内在复杂和动态结构的其他科学领域。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep attentive feature learning for histopathology image classificatication
用于组织病理学图像分类的深度注意力特征学习
Point Cloud Processing via Recurrent Set Encoding
  • DOI:
    10.1609/aaai.v33i01.33015441
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pengxiang Wu;Chao Chen;Jingru Yi;Dimitris N. Metaxas
  • 通讯作者:
    Pengxiang Wu;Chao Chen;Jingru Yi;Dimitris N. Metaxas
ASSD: Attentive Single Shot Multibox Detector
  • DOI:
    10.1016/j.cviu.2019.102827
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingru Yi;Pengxiang Wu;Dimitris N. Metaxas
  • 通讯作者:
    Jingru Yi;Pengxiang Wu;Dimitris N. Metaxas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitris Metaxas其他文献

Algorithmic issues in modeling motion
运动建模中的算法问题
  • DOI:
    10.1145/592642.592647
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pankaj K. Agarwal;Leonidas J. Guibas;H. Edelsbrunner;Jeff Erickson;M. Isard;Sariel Har;J. Hershberger;Christian Jensen;L. Kavraki;Patrice Koehl;Ming Lin;Dinesh Manocha;Dimitris Metaxas;Brian Mirtich;David Mount;S. Muthukrishnan;Dinesh Pai;E. Sacks;J. Snoeyink;Subhash Suri;Ouri E. Wolfson;Merl Mirtich@merl Com
  • 通讯作者:
    Merl Mirtich@merl Com
Multi-Stage Feature Fusion Network for Video Super-Resolution
用于视频超分辨率的多级特征融合网络
  • DOI:
    10.1109/tip.2021.3056868
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Huihui Song;Wenjie Xu;Dong Liu;Bo Liu;Qingshan Liu;Dimitris Metaxas
  • 通讯作者:
    Dimitris Metaxas
The Traffic Calming Effect of Delineated Bicycle Lanes
划定自行车道的交通平静效果
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hannah Younes;Clinton Andrews;Robert B. Noland;Jiahao Xia;Song Wen;Wenwen Zhang;Dimitris Metaxas;Leigh Ann Von Hagen;Jie Gong
  • 通讯作者:
    Jie Gong

Dimitris Metaxas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitris Metaxas', 18)}}的其他基金

Center: IUCRC Phase II Rutgers University: Center for Accelerated and Real Time Analytics (CARTA)
中心:IUCRC 第二阶段 罗格斯大学:加速和实时分析中心 (CARTA)
  • 批准号:
    2310966
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: HCC: Medium: Linguistically-Driven Sign Recognition from Continuous Signing for American Sign Language (ASL)
合作研究:HCC:媒介:美国手语 (ASL) 连续手语中语言驱动的手语识别
  • 批准号:
    2212301
  • 财政年份:
    2022
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track H: AI-based Tools to Enhance Access and Opportunities for the Deaf
NSF 融合加速器轨道 H:基于人工智能的工具,增强聋人的获取和机会
  • 批准号:
    2235405
  • 财政年份:
    2022
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track D: Data & AI Methods for Modeling Facial Expressions in Language with Applications to Privacy for the Deaf, ASL Education & Linguistic Res
NSF 融合加速器轨道 D:数据
  • 批准号:
    2040638
  • 财政年份:
    2020
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Scalable Integration of Data-Driven and Model-Based Methods for Large Vocabulary Sign Recognition and Search
CHS:中:协作研究:用于大词汇量符号识别和搜索的数据驱动和基于模型的方法的可扩展集成
  • 批准号:
    1763523
  • 财政年份:
    2018
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Phase 1 IUCRC Rutgers-New Brunswick: Center for Accelerated Real Time Analytics (CARTA)
第一阶段 IUCRC 罗格斯-新不伦瑞克:加速实时分析中心 (CARTA)
  • 批准号:
    1747778
  • 财政年份:
    2018
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
CHS: Medium: Data Driven Biomechanically Accurate Modeling of Human Gait on Unconstrained Terrain
CHS:中:数据驱动的无约束地形上人类步态的生物力学精确建模
  • 批准号:
    1703883
  • 财政年份:
    2017
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Data Visualizations for Linguistically Annotated, Publicly Shared, Video Corpora for American Sign Language (ASL)
EAGER:协作研究:美国手语 (ASL) 语言注释、公开共享视频语料库的数据可视化
  • 批准号:
    1748022
  • 财政年份:
    2017
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
  • 批准号:
    1513373
  • 财政年份:
    2015
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
EAGER: Multi-modal human gait experimentation and analysis on unconstrained terrains
EAGER:无约束地形上的多模式人类步态实验和分析
  • 批准号:
    1451292
  • 财政年份:
    2014
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了