NSF Convergence Accelerator Track H: AI-based Tools to Enhance Access and Opportunities for the Deaf

NSF 融合加速器轨道 H:基于人工智能的工具,增强聋人的获取和机会

基本信息

  • 批准号:
    2235405
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-15 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

We propose to develop sustainable, robust AI methods to overcome obstacles to digital communication and information access faced by Deaf and Hard-of-Hearing (DHH) individuals, empowering them personally and professionally. Users of American Sign Language (ASL), which has no standard written form, lack parity with hearing users in the digital arena. The proposed tools for privacy protection for ASL video communication and video search-by-example for access to multimedia digital resources build on prior NSF-funded AI research on linguistically-informed computer-based analysis and recognition of ASL from videos.PROBLEM #1. ASL signers cannot communicate anonymously about sensitive topics through videos in their native language; this is perceived by the Deaf community to be a serious problem.PROBLEM #2. There is no good way to look up a sign in a dictionary. Many ASL dictionaries enable sign look-up based on English translations, but what if the user does not understand the sign, or does not know its English translation? Others allow for search based on properties of ASL signs (e.g., handshape, location, movement type), but this is cumbersome, and a user must often look through hundreds of pictures of signs to find a target sign (if it is present at all in that dictionary).The tools to be developed will enable signers to anonymize ASL videos while preserving essential linguistic information conveyed by hands, arms, facial expressions, and head movements; and enable searching for a sign based on ASL input from a webcam or a video clip.Participants include DHH individuals, Deaf-owned companies, and members of other underrepresented minorities. The products will serve the 500,000 US signers and could be extended to other sign languages. The proposed application development brings together state-of-the-art research on: (1) video anonymization (using an asymmetric encoder-decoder structured image generator to generate high-resolution target frames driven by the original signing from the low-resolution source frames for anonymization, based on optical flow and confidence maps); (2) computer-based sign recognition from video (bidirectional skeleton-based isolated sign recognition using Graph Convolution Networks); and (3) HCI, including DHH user studies to assess desiderata for user interfaces for the proposed applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们建议开发可持续、强大的人工智能方法,以克服聋人和重听人(DHH)面临的数字通信和信息访问障碍,赋予他们个人和专业能力。美国手语(ASL)的用户没有标准的书面形式,在数字舞台上缺乏与听力用户的平等。建议的ASL视频通信和视频搜索的隐私保护工具,用于访问多媒体数字资源,建立在NSF资助的先前人工智能研究的基础上,该研究基于计算机对视频中ASL的语言信息进行分析和识别。问题1.ASL签名者不能通过他们的母语视频匿名交流敏感话题;这被聋人社区认为是一个严重的问题。问题2。没有好的方法在词典中查找手势。许多ASL词典支持基于英文翻译的手语查找,但如果用户不理解手语,或不知道其英文翻译怎么办?其他工具则允许基于ASL手势的属性(例如,手形、位置、移动类型)进行搜索,但这很麻烦,用户通常必须查看数百张手势的图片才能找到目标手势(如果该词典中存在目标手势)。将要开发的工具将使签名者能够匿名ASL视频,同时保留通过手、手臂、面部表情和头部动作传达的基本语言信息;并能够基于从网络摄像头或视频剪辑输入的ASL搜索手势。参与者包括DHH个人、聋人所有的公司和其他未被充分代表的少数族裔成员。这些产品将服务于50万美国手语用户,并可能扩展到其他手语。提出的应用开发结合了以下方面的最新研究:(1)视频匿名化(使用非对称编解码器结构化图像生成器,基于光流和置信度图,从用于匿名化的低分辨率源帧生成由原始签名驱动的高分辨率目标帧);(2)基于计算机的视频标志识别(基于双向骨架的基于图形卷积网络的孤立标志识别);和(3)人机界面,包括DHH用户研究,以评估拟议应用程序的用户界面的期望数据。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring the Design Space of Automatically Generated Emotive Captions for Deaf or Hard of Hearing Users
探索为聋哑或听力障碍用户自动生成情感字幕的设计空间
DiffSLVA: Harnessing Diffusion Models for Sign Language Video Anonymization
  • DOI:
    10.48550/arxiv.2311.16060
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaoyang Xia;C. Neidle;Dimitris N. Metaxas
  • 通讯作者:
    Zhaoyang Xia;C. Neidle;Dimitris N. Metaxas
Modeling Word Importance in Conversational Transcripts: Toward improved live captioning for Deaf and hard of hearing viewers
Challenges for Linguistically-Driven Computer-Based Sign Recognition from Continuous Signing for American Sign Language
美国手语连续手语对语言驱动的基于计算机的手语识别的挑战
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neidle, Carol
  • 通讯作者:
    Neidle, Carol
Understanding How Deaf and Hard of Hearing Viewers Visually Explore Captioned Live TV News
了解失聪和听力障碍观众如何视觉探索带字幕的直播电视新闻
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitris Metaxas其他文献

A frame-based model for large manufacturing databases
Algorithmic issues in modeling motion
运动建模中的算法问题
  • DOI:
    10.1145/592642.592647
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pankaj K. Agarwal;Leonidas J. Guibas;H. Edelsbrunner;Jeff Erickson;M. Isard;Sariel Har;J. Hershberger;Christian Jensen;L. Kavraki;Patrice Koehl;Ming Lin;Dinesh Manocha;Dimitris Metaxas;Brian Mirtich;David Mount;S. Muthukrishnan;Dinesh Pai;E. Sacks;J. Snoeyink;Subhash Suri;Ouri E. Wolfson;Merl Mirtich@merl Com
  • 通讯作者:
    Merl Mirtich@merl Com
A combustion-based technique for fire animation and visualization
  • DOI:
    10.1007/s00371-007-0162-3
  • 发表时间:
    2007-06-28
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Kyungha Min;Dimitris Metaxas
  • 通讯作者:
    Dimitris Metaxas
Multi-Stage Feature Fusion Network for Video Super-Resolution
用于视频超分辨率的多级特征融合网络
  • DOI:
    10.1109/tip.2021.3056868
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Huihui Song;Wenjie Xu;Dong Liu;Bo Liu;Qingshan Liu;Dimitris Metaxas
  • 通讯作者:
    Dimitris Metaxas
The Traffic Calming Effect of Delineated Bicycle Lanes
划定自行车道的交通平静效果
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hannah Younes;Clinton Andrews;Robert B. Noland;Jiahao Xia;Song Wen;Wenwen Zhang;Dimitris Metaxas;Leigh Ann Von Hagen;Jie Gong
  • 通讯作者:
    Jie Gong

Dimitris Metaxas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitris Metaxas', 18)}}的其他基金

Center: IUCRC Phase II Rutgers University: Center for Accelerated and Real Time Analytics (CARTA)
中心:IUCRC 第二阶段 罗格斯大学:加速和实时分析中心 (CARTA)
  • 批准号:
    2310966
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: HCC: Medium: Linguistically-Driven Sign Recognition from Continuous Signing for American Sign Language (ASL)
合作研究:HCC:媒介:美国手语 (ASL) 连续手语中语言驱动的手语识别
  • 批准号:
    2212301
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track D: Data & AI Methods for Modeling Facial Expressions in Language with Applications to Privacy for the Deaf, ASL Education & Linguistic Res
NSF 融合加速器轨道 D:数据
  • 批准号:
    2040638
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Scalable Integration of Data-Driven and Model-Based Methods for Large Vocabulary Sign Recognition and Search
CHS:中:协作研究:用于大词汇量符号识别和搜索的数据驱动和基于模型的方法的可扩展集成
  • 批准号:
    1763523
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Phase 1 IUCRC Rutgers-New Brunswick: Center for Accelerated Real Time Analytics (CARTA)
第一阶段 IUCRC 罗格斯-新不伦瑞克:加速实时分析中心 (CARTA)
  • 批准号:
    1747778
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1733843
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CHS: Medium: Data Driven Biomechanically Accurate Modeling of Human Gait on Unconstrained Terrain
CHS:中:数据驱动的无约束地形上人类步态的生物力学精确建模
  • 批准号:
    1703883
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Data Visualizations for Linguistically Annotated, Publicly Shared, Video Corpora for American Sign Language (ASL)
EAGER:协作研究:美国手语 (ASL) 语言注释、公开共享视频语料库的数据可视化
  • 批准号:
    1748022
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
  • 批准号:
    1513373
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
EAGER: Multi-modal human gait experimentation and analysis on unconstrained terrains
EAGER:无约束地形上的多模式人类步态实验和分析
  • 批准号:
    1451292
  • 财政年份:
    2014
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
  • 批准号:
    2344426
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
  • 批准号:
    2344174
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
  • 批准号:
    2344228
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了