Determining the molecular mechanisms underlying the size-scaling of biosynthesis
确定生物合成尺寸缩放背后的分子机制
基本信息
- 批准号:2040908
- 负责人:
- 金额:$ 97.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of this project is to understand how cell growth triggers cell division. It has long been known that there is often a requirement for cell growth in order to initiate cell division, but the way this works has remained unknown. The central question is what is biochemically different about a large cell compared to a small cell that makes it divide? To address this question, this project is based on a recent breakthrough by the investigator in understanding how growth triggers division in budding yeast. Contrary to expectations, the investigator found that growth did not increase the activity of a cell division activator. Instead, cell growth triggers division by diluting a protein that inhibits cell division. This project leverages this conceptual breakthrough to rephrase the question of how cell growth triggers cell division to the question of how cell growth results in different amounts of specific proteins being made. In other words, what are the mechanisms that ensure that proteins activating cell division are made in proportion to the size of the cell so that their concentrations do not change as cells get larger? Moreover, how do big and small cells make the same number of cell division inhibitors so that their concentrations decrease as cells grow larger to trigger division? By answering these questions, this project will determine the molecular mechanisms cells use to link cell growth to cell division, which is a fundamental question in cell and developmental biology. The Broader Impact of the project includes the intrinsic nature of the research as all dividing cells need to regulate cell size. Additional activities include the training of undergraduate and graduate students along with post-doctoral researchers. Activities to broadly promote quantitative training along with outreach to high school students will also be carried out. Cell growth, division, and biosynthesis must be carefully orchestrated to maintain efficient cellular function. To achieve this, cell size and biosynthesis are inextricably linked. Total RNA and protein synthesis rates increase in proportion to size so that gene product copy numbers scale with cell volume. This ensures that macromolecule concentrations are kept constant as a cell grows to maintain efficient cellular function. However, if cells become excessively large, this scaling of biosynthesis collapses and cellular physiology and efficient growth become severely compromised. To prevent this, budding yeast cells maintain their size within an optimal range for cellular function by coupling cell growth to cell division. The researchers found that the synthesis of the cell cycle activator Cln3 increased in proportion to cell size, while the synthesis of the budding yeast cell cycle inhibitor Whi5 was independent of cell size such that a constant number of Whi5 molecules are made in each cell cycle. Thus, Whi5 concentration is more dilute in larger cells which triggers an earlier cell cycle entry in larger cells. Thus, the differential size-dependencies of cell cycle activators, which scale in proportion to cell size, and cell cycle inhibitors, which are independent of cell size, couple growth to division to maintain cells within a physiologically optimal size range. The differential size-dependencies in the synthesis of cell cycle activators and inhibitors raise two key questions will be addressed in this project. First, what ensures most protein and mRNA synthesis increases in proportion to cell size? Second, what allows proteins, such as Whi5, to break the general rule and be expressed independently of cell size? This project will employ the model organism budding yeast to address these twin questions using a combination of proteomics, genetics, and quantitative live cell imaging. Successful completion of the project will thereby resolve a fundamental question in cell biology of how cell size, cell division, and biosynthesis are intimately and mechanistically linked to promote cellular function.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的首要目标是了解细胞生长如何触发细胞分裂。人们早就知道,为了启动细胞分裂,通常需要细胞生长,但其工作方式仍然未知。核心问题是,大细胞与小细胞相比,在生物化学上有什么不同?为了解决这个问题,这个项目是基于最近的突破,研究人员在了解如何增长触发芽殖酵母分裂。与预期相反,研究人员发现生长并没有增加细胞分裂激活剂的活性。相反,细胞生长通过稀释抑制细胞分裂的蛋白质来触发分裂。该项目利用这一概念上的突破,将细胞生长如何引发细胞分裂的问题重新表述为细胞生长如何导致产生不同数量的特定蛋白质的问题。换句话说,是什么机制确保激活细胞分裂的蛋白质与细胞的大小成比例,从而使它们的浓度不会随着细胞变大而改变?此外,大细胞和小细胞如何产生相同数量的细胞分裂抑制剂,从而使它们的浓度随着细胞变大而降低以触发分裂?通过回答这些问题,该项目将确定细胞用于将细胞生长与细胞分裂联系起来的分子机制,这是细胞和发育生物学中的一个基本问题。 该项目的更广泛影响包括研究的内在性质,因为所有分裂细胞都需要调节细胞大小。 其他活动包括培训本科生和研究生沿着博士后研究人员。 还将开展广泛促进量化培训的活动,沿着向高中生推广。细胞生长、分裂和生物合成必须精心安排以维持有效的细胞功能。为了实现这一点,细胞大小和生物合成是密不可分的。总RNA和蛋白质合成速率与细胞大小成比例增加,因此基因产物拷贝数与细胞体积成比例。这确保了随着细胞生长,大分子浓度保持恒定,以维持有效的细胞功能。然而,如果细胞变得过大,这种生物合成的规模就会崩溃,细胞生理学和有效生长就会严重受损。为了防止这种情况,芽殖酵母细胞通过将细胞生长与细胞分裂相结合来将其大小保持在细胞功能的最佳范围内。研究人员发现,细胞周期激活剂Cln 3的合成与细胞大小成比例增加,而芽殖酵母细胞周期抑制剂Whi 5的合成与细胞大小无关,因此在每个细胞周期中都会产生恒定数量的Whi 5分子。因此,Whi 5浓度在较大细胞中更稀,这在较大细胞中触发更早的细胞周期进入。因此,细胞周期激活剂(其与细胞大小成比例地缩放)和细胞周期抑制剂(其与细胞大小无关)的差异大小依赖性将生长与分裂偶联以将细胞维持在生理学上最佳的大小范围内。在细胞周期活化剂和抑制剂的合成中的不同尺寸依赖性提出了两个关键问题,将在这个项目中得到解决。首先,是什么确保了大多数蛋白质和mRNA的合成与细胞大小成比例地增加?第二,是什么让蛋白质,如Whi 5,打破一般规则,独立于细胞大小表达?该项目将采用模式生物芽殖酵母,以解决这些孪生问题,使用蛋白质组学,遗传学和定量活细胞成像的组合。该项目的成功完成将解决细胞生物学中的一个基本问题,即细胞大小、细胞分裂和生物合成如何密切和机械地联系在一起,以促进细胞功能。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RNA polymerase II dynamics and mRNA stability feedback scale mRNA amounts with cell size
RNA 聚合酶 II 动力学和 mRNA 稳定性反馈调节 mRNA 量与细胞大小的关系
- DOI:10.1016/j.cell.2023.10.012
- 发表时间:2023
- 期刊:
- 影响因子:64.5
- 作者:Swaffer, Matthew P.;Marinov, Georgi K.;Zheng, Huan;Fuentes Valenzuela, Lucas;Tsui, Crystal Yee;Jones, Andrew W.;Greenwood, Jessica;Kundaje, Anshul;Greenleaf, William J.;Reyes-Lamothe, Rodrigo
- 通讯作者:Reyes-Lamothe, Rodrigo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Skotheim其他文献
Jan Skotheim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Skotheim', 18)}}的其他基金
相似国自然基金
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
- 批准号:82372073
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
- 批准号:82373145
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
- 批准号:82304565
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
- 批准号:32303019
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
- 批准号:82371704
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
- 批准号:31900545
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 97.62万 - 项目类别:
Determining Potential Mechanisms of Worse Outcomes in Black HCM Patients
确定黑人 HCM 患者出现更糟糕结果的潜在机制
- 批准号:
10717764 - 财政年份:2023
- 资助金额:
$ 97.62万 - 项目类别:
Determining the molecular mechanisms of HIV-1 maturation
确定 HIV-1 成熟的分子机制
- 批准号:
10750083 - 财政年份:2023
- 资助金额:
$ 97.62万 - 项目类别:
Determining the molecular mechanisms of CARM1's role in the maintenance and plasticity of skeletal muscle mass and function
确定 CARM1 在骨骼肌质量和功能的维持和可塑性中作用的分子机制
- 批准号:
479146 - 财政年份:2023
- 资助金额:
$ 97.62万 - 项目类别:
Operating Grants
Determining cell-specific mechanisms that drive aberrant bone regeneration in Down syndrome
确定驱动唐氏综合症骨再生异常的细胞特异性机制
- 批准号:
10654983 - 财政年份:2023
- 资助金额:
$ 97.62万 - 项目类别:
Chaperone protection in Lewy body and Alzheimer’s dementias: determining the structural, molecular and cellular mechanisms of a novel, non-canonical Hsp70 action blocking a-synuclein oligomerization
路易体和阿尔茨海默氏痴呆中的伴侣保护:确定阻断 α-突触核蛋白寡聚化的新型非典型 Hsp70 作用的结构、分子和细胞机制
- 批准号:
10649331 - 财政年份:2023
- 资助金额:
$ 97.62万 - 项目类别:
Determining and targeting mechanisms controlling cancer cell division
确定和靶向控制癌细胞分裂的机制
- 批准号:
10818060 - 财政年份:2023
- 资助金额:
$ 97.62万 - 项目类别:
Determining the mechanisms that cause persistent MRSA bloodstream infection by tracking in-host evolution
通过追踪宿主进化来确定导致持续性 MRSA 血流感染的机制
- 批准号:
10352493 - 财政年份:2022
- 资助金额:
$ 97.62万 - 项目类别:
Determining the mechanisms that cause persistent MRSA bloodstream infection by tracking in-host evolution
通过追踪宿主进化来确定导致持续性 MRSA 血流感染的机制
- 批准号:
10613457 - 财政年份:2022
- 资助金额:
$ 97.62万 - 项目类别:
Determining the environmental modifiers and molecular mechanisms of liver disease in X-linked myotubular myopathy.
确定 X 连锁肌管肌病肝病的环境调节剂和分子机制。
- 批准号:
473683 - 财政年份:2022
- 资助金额:
$ 97.62万 - 项目类别:
Fellowship Programs