FAI: Towards Holistic Bias Mitigation in Computer Vision Systems

FAI:迈向计算机视觉系统中的整体偏差缓解

基本信息

  • 批准号:
    2041009
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

With the increasing use of artificial intelligence (AI) systems in life-changing decisions, such as hiring or firing of individuals or the length of jail sentences, there has been an increasing concern about the fairness of these systems. There is a need to guarantee that AI systems are not biased against segments of the population. This project aims to mitigate AI bias in the domain of computer vision, a driving application for much of the recent advances in a popular form of AI known as deep learning. Computer vision systems are increasingly prevalent in areas of society ranging from healthcare to law enforcement: from apps that analyze skin pictures for melanoma detection to face recognition systems used in criminal investigations. These systems are subject to three major sources of bias: biased data, biased annotations, and biased models. Biased data follows from poor image collection practices, typically the under-representation of certain population groups. Biased annotation follows from the use of annotation platforms with untrained image labelers, who tend to produce annotations that reflect their own image interpretations, rather than objective labels. Biased models can ensue from either the existence of data or annotation biases on the datasets used to train the models, or the choice of biased model architectures. The three bias components have received different attention in the literature, with most previous work focusing on the mitigation of model bias. However, this usually boils down to downplaying groups for which there is a lot of data and promoting groups for which data is scarce. This practice can hurt overall system performance. The remaining sources of bias, datasets and annotation, have received very little algorithmic attention. The project aims to overcome this problem, by introducing a new framework to jointly address the three sources of bias within one unified bias mitigation architecture. This architecture aims to train fair classifiers by iterative optimization of three distinct modules: 1) Dataset bias mitigation algorithms that identify and downweigh biased examples and seek additional examples in a large pool of data to counterbalance the associated biases. 2) Label bias mitigation systems based on machine teaching algorithms that establish clear, replicable, and auditable procedures to teach annotators how to label images without label bias. 3) Model auditing techniques based on counterfactual visual explanations that enable the visualization of the factors contributing to model decisions and why they are biased. The three modules combine into an architecture for joint dataset, label, and model bias mitigation by iterative optimization of datasets, annotators, and models to minimize bias. The project will generate software for dataset bias mitigation, unbiased annotator training, explanations and visualizations, model auditing, and fair model training, which will be made available from the investigator website. This will be complemented with datasets for the design of various form of bias mitigation algorithms, and tools to help practitioners detect and combat bias. Several activities are also planned to broaden the participation of underrepresented K-12 and undergraduate students in the STEM field. They will include the participation of a team of such students, recruited from University of California San Diego programs that aim to increase the participation of these groups in STEM, and aim to provide these students with early exposure to the challenges of real-world engineering, fair machine learning, and deep learning systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人工智能(AI)系统在改变生活的决策中的使用越来越多,例如雇佣或解雇个人或刑期长短,人们越来越关注这些系统的公平性。有必要保证人工智能系统不会对部分人口有偏见。该项目旨在减轻计算机视觉领域的AI偏见,这是一种被称为深度学习的流行AI形式的最新进展的驱动应用。计算机视觉系统在从医疗保健到执法的社会领域越来越普遍:从分析黑色素瘤检测皮肤图片的应用程序到用于刑事调查的人脸识别系统。这些系统受到三个主要偏差来源的影响:有偏差的数据,有偏差的注释和有偏差的模型。有偏见的数据来自不良的图像收集做法,通常是某些人口群体的代表性不足。有偏见的注释来自于使用未经训练的图像标注者的注释平台,这些标注者倾向于生成反映他们自己的图像解释的注释,而不是客观标签。有偏模型可能源于用于训练模型的数据集上存在数据或注释偏差,或者选择有偏模型架构。 这三个偏差分量在文献中得到了不同的关注,大多数以前的工作集中在减轻模型偏差。然而,这通常归结为淡化有大量数据的群体,促进数据稀缺的群体。这种做法可能会损害整体系统性能。其余的偏差来源,数据集和注释,很少受到算法的关注。该项目旨在通过引入一个新的框架来克服这个问题,以在一个统一的偏差缓解架构中联合解决三个偏差来源。该架构旨在通过三个不同模块的迭代优化来训练公平分类器:1)数据集偏见缓解算法,该算法识别和降低偏见示例的权重,并在大型数据池中寻找额外的示例以抵消相关的偏见。2)标签偏见缓解系统基于机器教学算法,建立清晰、可复制和可审计的程序,以教注释者如何在没有标签偏见的情况下标记图像。3)基于反事实视觉解释的模型审计技术,使有助于模型决策的因素以及它们为什么有偏见的可视化。这三个模块联合收割机组成一个架构,通过迭代优化数据集、注释器和模型来减少数据集、标签和模型的偏差,从而最大限度地减少偏差。该项目将生成用于数据集偏倚缓解、无偏倚注释者培训、解释和可视化、模型审计和公平模型培训的软件,这些软件将在研究者网站上提供。这将与用于设计各种形式的偏见缓解算法的数据集以及帮助从业者检测和对抗偏见的工具相补充。还计划开展一些活动,以扩大代表性不足的K-12和本科生在STEM领域的参与。他们将包括一个这样的学生团队的参与,从加州圣地亚哥大学的计划,旨在增加这些群体在干的参与,并旨在为这些学生提供早期接触现实世界的挑战工程,公平的机器学习,该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估,优点和更广泛的影响审查标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Professional Level Crowd Annotation of Expert Domain Data
SCOUT: Self-Aware Discriminant Counterfactual Explanations
VALHALLA: Visual Hallucination for Machine Translation
Toward Unsupervised Realistic Visual Question Answering
走向无监督的现实视觉问答
Improving Video Model Transfer with Dynamic Representation Learning
通过动态表示学习改进视频模型传输
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nuno Vasconcelos其他文献

Advanced methods for robust object detection
用于稳健物体检测的先进方法
121 Neural Network Dose Prediction for Cervical Brachytherapy: Overcoming Data Scarcity for Applicator-Specific Models
用于宫颈近距离放射治疗的 121 神经网络剂量预测:克服特定施源器模型的数据稀缺性
  • DOI:
    10.1016/s0167-8140(23)89212-x
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Lance Moore;Karoline Kallis;Nuno Vasconcelos;Kelly Kisling;Dominique Rash;Catheryn Yashar;Jyoti Mayadev;Kevin Moore;Sandra Meyers
  • 通讯作者:
    Sandra Meyers
Towards Calibrated Multi-label Deep Neural Networks
迈向校准的多标签深度神经网络
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiacheng Cheng;Nuno Vasconcelos
  • 通讯作者:
    Nuno Vasconcelos

Nuno Vasconcelos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nuno Vasconcelos', 18)}}的其他基金

RI:Small:Dynamic Networks for Efficient, Adaptive, and Multimodal Vision
RI:Small:用于高效、自适应和多模态视觉的动态网络
  • 批准号:
    2303153
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
NRI: FND: Towards Scalable and Self-Aware Robotic Perception
NRI:FND:迈向可扩展和自我意识的机器人感知
  • 批准号:
    1924937
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
NRI: Real-Time Semantic Computer Vision for Co-Robotics
NRI:协作机器人的实时语义计算机视觉
  • 批准号:
    1637941
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: IA: Quantifying Plankton Diversity with Taxonomy and Attribute Based Classifiers of Underwater Microscope Images
大数据:合作研究:IA:利用水下显微镜图像的分类和属性分类器量化浮游生物多样性
  • 批准号:
    1546305
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
NRI-Small: A Biologically Plausible Architecture for Robotic Vision
NRI-Small:一种生物学上合理的机器人视觉架构
  • 批准号:
    1208522
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Large-vocabulary Semantic Image Processing: Theory and Algorithms
大词汇量语义图像处理:理论与算法
  • 批准号:
    0830535
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
RI-Small: Optimal Automated Design of Cascaded Object Detectors
RI-Small:级联物体检测器的优化自动化设计
  • 批准号:
    0812235
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Understanding Video of Crowded Environments
了解拥挤环境的视频
  • 批准号:
    0534985
  • 财政年份:
    2005
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CAREER: Weakly Supervised Recognition
职业:弱监督识别
  • 批准号:
    0448609
  • 财政年份:
    2005
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似海外基金

SYBERAC Towards a SYstems-Based, holistic Environmental Risk Assessment of Chemicals
SYBERAC 迈向基于系统的全面化学品环境风险评估
  • 批准号:
    10109292
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    EU-Funded
FMitF: Track I: A Holistic Approach Towards Online Monitoring of Integrated Circuits and Systems
FMITF:第一轨:集成电路和系统在线监控的整体方法
  • 批准号:
    2319572
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Holistic Wireless Network Virtualization: Digital and Intelligent Transformation Towards 6G
无线网络整体虚拟化:迈向6G数字化、智能化转型
  • 批准号:
    567874-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Postdoctoral Fellowships
Holistic formalization of non-propositional meaning by cross-linguistic data-analysis: towards a new formal-logical language
通过跨语言数据分析非命题意义的整体形式化:走向新的形式逻辑语言
  • 批准号:
    22K13112
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ALLIANCE - A hoListic framework in the quality Labelled food supply chain systems' management towards enhanced data Integrity and verAcity, interoperability, traNsparenCy, and tracEability
联盟 - 质量标签食品供应链系统管理的整体框架,旨在增强数据完整性和准确性、互操作性、透明度和可追溯性
  • 批准号:
    10043927
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    EU-Funded
Combustion analysis and holistic system modelling utilising hydrogen and carbon capture - towards the application of low-carbon fuels in the glass man
利用氢和碳捕获的燃烧分析和整体系统建模 - 致力于低碳燃料在玻璃人中的应用
  • 批准号:
    2604385
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
Towards a holistic model of academic achievement in autism
建立自闭症学术成就的整体模型
  • 批准号:
    2619093
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
SHF: Small: Towards a Holistic Causal Model for Continuous Software Traceability
SHF:小型:迈向连续软件可追溯性的整体因果模型
  • 批准号:
    2007246
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Refractive dynamic tensor field tomography: towards a holistic approach
折射动态张量场断层扫描:走向整体方法
  • 批准号:
    411005946
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grants
Urban Gardens: towards holistic health and food security for urban Indigenous Peoples
城市花园:实现城市原住民的整体健康和粮食安全
  • 批准号:
    363982
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了