CAREER: Weakly Supervised Recognition
职业:弱监督识别
基本信息
- 批准号:0448609
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-04-15 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The design of systems that can detect and recognize objects in large image and video repositories will enable significant developments in areas as diverse as life sciences, surveillance and law enforcement, entertainment, advertisement, and copyright protection, among others. While significant progress has been achieved in this area over the last decades, the design of such systems still requires vast amounts of expert knowledge and manual labor. This project lays the foundation for a long-term vision of recognition systems containing banks of recognition modules fully trainable by naive users, with minimal requirements in terms of manual data pre-processing and computational complexity. From a technical standpoint, the project addresses two fundamental barriers in the path to this objective: 1) the dependence of current classifiers on carefully assembled and pre-processed training sets, and 2) the training complexity of state-of-the-art classification architectures. The first is addressed through the introduction of a new statistical learning framework, denoted by weakly supervised assembly of training sets, which combines elements of discriminant visual saliency and image matching to automate the process of assembling the training sets required for detection and recognition. The second is addressed through the introduction of new, and computationally efficient, boosting methods for the design of cascades of large-margin classifiers, with support for both template and constellation-based object representations. At the educational level, the project will contribute to the advancement of the coverage of the recognition problem, through the introduction of new courses, and the development of a software library to be used as a teaching aid in visual information retrieval courses. The design of this library will also provide research opportunities for students from underrepresented backgrounds at a scale well beyond what can usually be found at the undergraduate level.
能够检测和识别大型图像和视频存储库中的对象的系统的设计将使生命科学、监视和执法、娱乐、广告和版权保护等领域的重大发展成为可能。虽然在过去的几十年里,这一领域已经取得了重大进展,但设计这样的系统仍然需要大量的专业知识和手工劳动。该项目为识别系统的长期愿景奠定了基础,该系统包含完全可由天真用户训练的识别模块,对手动数据预处理和计算复杂性的要求最低。从技术角度来看,该项目解决了实现这一目标的两个基本障碍:1)当前分类器对精心组装和预处理的训练集的依赖,以及2)最先进的分类架构的训练复杂性。 第一个是解决通过引入一个新的统计学习框架,表示弱监督组装的训练集,它结合了判别视觉显着性和图像匹配的元素,以自动化的过程中组装所需的检测和识别的训练集。第二个问题是通过引入新的,计算效率高,提高方法的级联设计的大利润分类,支持模板和星座为基础的对象表示。在教育一级,该项目将通过开设新课程和开发一个软件库,作为视觉信息检索课程的教学辅助工具,促进扩大识别问题的覆盖面。这个图书馆的设计还将为来自代表性不足的背景的学生提供研究机会,其规模远远超过通常在本科阶段可以找到的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nuno Vasconcelos其他文献
Advanced methods for robust object detection
用于稳健物体检测的先进方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zhaowei Cai;Nuno Vasconcelos - 通讯作者:
Nuno Vasconcelos
121 Neural Network Dose Prediction for Cervical Brachytherapy: Overcoming Data Scarcity for Applicator-Specific Models
用于宫颈近距离放射治疗的 121 神经网络剂量预测:克服特定施源器模型的数据稀缺性
- DOI:
10.1016/s0167-8140(23)89212-x - 发表时间:
2023-09-01 - 期刊:
- 影响因子:5.300
- 作者:
Lance Moore;Karoline Kallis;Nuno Vasconcelos;Kelly Kisling;Dominique Rash;Catheryn Yashar;Jyoti Mayadev;Kevin Moore;Sandra Meyers - 通讯作者:
Sandra Meyers
Towards Calibrated Multi-label Deep Neural Networks
迈向校准的多标签深度神经网络
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jiacheng Cheng;Nuno Vasconcelos - 通讯作者:
Nuno Vasconcelos
Nuno Vasconcelos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nuno Vasconcelos', 18)}}的其他基金
RI:Small:Dynamic Networks for Efficient, Adaptive, and Multimodal Vision
RI:Small:用于高效、自适应和多模态视觉的动态网络
- 批准号:
2303153 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FAI: Towards Holistic Bias Mitigation in Computer Vision Systems
FAI:迈向计算机视觉系统中的整体偏差缓解
- 批准号:
2041009 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
NRI: FND: Towards Scalable and Self-Aware Robotic Perception
NRI:FND:迈向可扩展和自我意识的机器人感知
- 批准号:
1924937 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
NRI: Real-Time Semantic Computer Vision for Co-Robotics
NRI:协作机器人的实时语义计算机视觉
- 批准号:
1637941 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: IA: Quantifying Plankton Diversity with Taxonomy and Attribute Based Classifiers of Underwater Microscope Images
大数据:合作研究:IA:利用水下显微镜图像的分类和属性分类器量化浮游生物多样性
- 批准号:
1546305 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
NRI-Small: A Biologically Plausible Architecture for Robotic Vision
NRI-Small:一种生物学上合理的机器人视觉架构
- 批准号:
1208522 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Large-vocabulary Semantic Image Processing: Theory and Algorithms
大词汇量语义图像处理:理论与算法
- 批准号:
0830535 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
RI-Small: Optimal Automated Design of Cascaded Object Detectors
RI-Small:级联物体检测器的优化自动化设计
- 批准号:
0812235 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding Video of Crowded Environments
了解拥挤环境的视频
- 批准号:
0534985 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Foundations of Unsupervised and Weakly Supervised Learning
无监督和弱监督学习的基础
- 批准号:
RGPIN-2019-06018 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
DGDND-2022-05397 - 财政年份:2022
- 资助金额:
-- - 项目类别:
DND/NSERC Discovery Grant Supplement
Development of deepometry for the supervised and weakly supervised learning of imaging data
用于成像数据监督和弱监督学习的深度测量的发展
- 批准号:
2748735 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
- 批准号:
2228990 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
- 批准号:
2228989 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
3D land cover mapping from satellite imagery by weakly supervised learning
通过弱监督学习根据卫星图像绘制 3D 土地覆盖图
- 批准号:
22H03609 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
- 批准号:
RGPIN-2018-05715 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
RGPIN-2022-05397 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Weakly-supervised semantic segmentation to study resistance to antibiotics
用于研究抗生素耐药性的弱监督语义分割
- 批准号:
562806-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards