EAGER: Measuring and controlling nanoscale interactions in biomatter via quantum degrees of freedom

EAGER:通过量子自由度测量和控制生物物质中的纳米级相互作用

基本信息

  • 批准号:
    2041158
  • 负责人:
  • 金额:
    $ 20.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2023-10-31
  • 项目状态:
    已结题

项目摘要

Clarifying nanoscale interactions in biological matter is arguably one of the most ubiquitous challenges in biology today. The small length scales involved require that quantum effects be taken into account in both modeling and experiments. For example, experimental data suggest that (quantum) vibronic and spin degrees of freedom might underlie a myriad of biologically relevant nanoscale phenomena including: the biosensing of magnetic fields for animal navigation; the regulation of metabolic and physiological function; and the efficiency of electron transport through biomolecules. If this is true, it follows that nanoscale interactions within biological matter could be controlled via quantum-based approaches. In this project, the physiology of cells will be systematically controlled through engineered optical pulses affecting and “driving” different vibronic quantum states inside proteins. Having nanoscale electromagnetic handles onto cellular processes will enable the monitoring and selective stimulation or suppression of cellular and biological functions that are electromagnetic in nature. Controlling nanoscale interactions in biological matter will impact fields as diverse as therapeutics and biomimetic technologies. For example, the course of disease could be altered by controlling quantum-mediated pathways, or by developing drugs that quench or stimulate them; and technological sensors of electromagnetic field could be optimized to rely on quantum rules evolved by nature over the course of millions of years. In addition, the work will open up avenues for interdisciplinary research in chemistry, physics, and biology. Students engaged in this project will benefit from the opportunities to engage with a variety of experimental techniques at the interface of chemistry, biology, material science and physics.Experiments suggest that quantum nanoscale interactions in biological matter might underlie phenomena as varied as magnetic field detection for animal navigation, metabolic and physiological regulation in cells and optimal electron transport in biomolecules. If this is true, it follows that nanoscale interactions within biological matter could be controlled via quantum degrees of freedom. Here, (quantum) vibronic degrees of freedom in proteins will be excited and controlled, with views to systematically assess macroscopic physiological reactions to such quantum stimuli. In a setup that combines confocal microscopy with electrophysiology capabilities, ultrafast optical pulses (femtosecond) will address distinct (quantum) vibronic degrees of freedom in proteins inside cells; cellular physiology will be concomitantly tracked at pertinent timescales (millisecond to second) by the fluorescence of metabolic dyes and by electrophysiological responses. Proteins photoexcited in this way have been demonstrated to influence ion channel functioning and thus macroscale physiology. Importantly, in this project the ultrafast pulses will be numerically engineered to subject particular vibronic pathways to optimal quantum control. Thus, the effect of (fast) engineered nanoscale interactions at the quantum level will be read-out by the effect that they produce on macroscopic biological matter and its (slow) physiological functioning. A long-term goal is to establish how the photoexcitation of proteins with quantum engineered light pulses translates into repeatable physiological outcomes in cells. This knowledge can be used to drive organismic behavior and physiological function through the control of (quantum) vibronic pathways by tailored light fields. This project will contribute to the training of interdisciplinary researchers working at the interface of chemistry, physics, and biology, and who will be well-versed in a variety of experimental techniques (optics, quantum control, spin physics, cellular biology, nanomaterials development).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
阐明生物物质中的纳米级相互作用可以说是当今生物学中最普遍的挑战之一。所涉及的小长度尺度要求在建模和实验中都要考虑量子效应。例如,实验数据表明,(量子)振动自由度和自旋自由度可能是无数生物相关纳米级现象的基础,包括:用于动物导航的磁场生物传感;代谢和生理功能的调节;以及电子通过生物分子传递的效率。如果这是真的,那么生物物质内部的纳米级相互作用可以通过基于量子的方法来控制。在这个项目中,通过工程光脉冲影响和“驱动”蛋白质内部不同的振动量子态,系统地控制细胞的生理机能。在细胞过程中使用纳米级电磁手柄将能够监测和选择性地刺激或抑制本质上是电磁的细胞和生物功能。控制生物物质中的纳米级相互作用将影响治疗学和仿生技术等多种领域。例如,疾病的进程可以通过控制量子介导的途径来改变,或者通过开发抑制或刺激它们的药物来改变;电磁场的技术传感器可以优化,以依赖于自然界在数百万年的过程中进化出来的量子规则。此外,这项工作将为化学、物理和生物学的跨学科研究开辟道路。参与本项目的学生将有机会接触到化学、生物学、材料科学和物理学的各种实验技术。实验表明,生物物质中的量子纳米级相互作用可能是多种现象的基础,如动物导航的磁场检测,细胞中的代谢和生理调节以及生物分子中的最佳电子传递。如果这是真的,那么生物物质内部的纳米级相互作用可以通过量子自由度来控制。在这里,蛋白质中的(量子)振动自由度将被激发和控制,以系统地评估对这种量子刺激的宏观生理反应。在将共聚焦显微镜与电生理功能相结合的装置中,超快光脉冲(飞秒)将处理细胞内蛋白质中不同的(量子)振动自由度;通过代谢染料的荧光和电生理反应,将在相关的时间尺度上(毫秒到秒)跟踪细胞生理学。以这种方式光激发的蛋白质已被证明影响离子通道功能,从而影响宏观生理学。重要的是,在这个项目中,超快脉冲将通过数值工程使特定的振动路径达到最佳量子控制。因此,在量子水平上(快速)工程纳米级相互作用的影响将通过它们对宏观生物物质及其(缓慢)生理功能产生的影响来解读。一个长期目标是确定如何用量子工程光脉冲将蛋白质的光激发转化为细胞中可重复的生理结果。这些知识可以用来驱动生物体的行为和生理功能,通过控制(量子)振动途径,定制光场。该项目将有助于培养精通各种实验技术(光学、量子控制、自旋物理、细胞生物学、纳米材料开发)的化学、物理和生物学交叉学科的研究人员。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clarice Aiello其他文献

Modernizing Mechatronics course with Quantum Engineering
量子工程现代化机电一体化课程
Magnetic Field Stimulation Affects Vascular Structure and Function Through Direct Influence on Protein Disulfide Isomerase Activity Coupled Cytoskeleton Remodeling
磁场刺激通过直接影响与细胞骨架重塑偶联的蛋白质二硫键异构酶活性来影响血管结构和功能。
  • DOI:
    10.1016/j.freeradbiomed.2024.10.146
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Ricardo Cesar Massucatto;Abasalt Baharami;Daniela Kajihara;Lucas Gutierre;Francisco R. Laurindo;Clarice Aiello;Leonardo Tanaka
  • 通讯作者:
    Leonardo Tanaka
Effects of static magnetic field on vascular function and structure and their potential implications with redox regulation of actin cytoskeleton
静磁场对血管功能和结构的影响及其与肌动蛋白细胞骨架氧化还原调节的潜在关系
  • DOI:
    10.1016/j.freeradbiomed.2023.10.203
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Ricardo Massucatto;Abasalt Baharami;Lucas Gutierre;Clarice Aiello;Francisco R. Laurindo;Leonardo Tanaka
  • 通讯作者:
    Leonardo Tanaka

Clarice Aiello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clarice Aiello', 18)}}的其他基金

RCN: Instrumentation for Quantum Biology (I-QuBio)
RCN:量子生物学仪器 (I-QuBio)
  • 批准号:
    2105474
  • 财政年份:
    2021
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Continuing Grant
EAGER: Unravel, mimic and control physiology via chiral-induced spin selectivity: a quantum approach
EAGER:通过手性诱导的自旋选择性揭示、模拟和控制生理学:一种量子方法
  • 批准号:
    2114144
  • 财政年份:
    2021
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Modeling, Measuring and Controlling Human Comfort in Human-Autonomous-Machine Interaction (HaMI)
职业:在人机交互 (HaMI) 中建模、测量和控制人体舒适度
  • 批准号:
    1845779
  • 财政年份:
    2019
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Continuing Grant
Microscopy Infrastructure for Controlling and Measuring Dynamic Cellular Processes
用于控制和测量动态细胞过程的显微镜基础设施
  • 批准号:
    RTI-2020-00798
  • 财政年份:
    2019
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Research Tools and Instruments
Measuring, Modeling and Controlling Heterogeneity
测量、建模和控制异质性
  • 批准号:
    10166783
  • 财政年份:
    2017
  • 资助金额:
    $ 20.12万
  • 项目类别:
Prediction, prevention and treatment of preeclampsia by measuring and controlling angiogenic factors
通过测量和控制血管生成因子来预测、预防和治疗先兆子痫
  • 批准号:
    23592396
  • 财政年份:
    2011
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Manufacturing, controlling, manipulating and measuring continuous-variable quantum entanglement
制造、控制、操纵和测量连续变量量子纠缠
  • 批准号:
    FT100100515
  • 财政年份:
    2011
  • 资助金额:
    $ 20.12万
  • 项目类别:
    ARC Future Fellowships
Measuring and controlling FGF signaling in ESC
测量和控制 ESC 中的 FGF 信号传导
  • 批准号:
    352198-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 20.12万
  • 项目类别:
    University Undergraduate Student Research Awards
Low intensity ultrasound for measuring the properties of wheat flour dough and controlling its manufacture
低强度超声波测量小麦面粉面团的特性并控制其生产
  • 批准号:
    257905-2002
  • 财政年份:
    2007
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Strategic Projects - Group
DDDAS-SMRP: Measuring and Controlling Turbulence and Particle Populations
DDDAS-SMRP:测量和控制湍流和粒子群
  • 批准号:
    0540147
  • 财政年份:
    2006
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Continuing Grant
Low intensity ultrasound for measuring the properties of wheat flour dough and controlling its manufacture
低强度超声波测量小麦面粉面团的特性并控制其生产
  • 批准号:
    257905-2002
  • 财政年份:
    2006
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Strategic Projects - Group
Low intensity ultrasound for measuring the properties of wheat flour dough and controlling its manufacture
低强度超声波测量小麦面粉面团的特性并控制其生产
  • 批准号:
    257905-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Strategic Projects - Group
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了