EAGER: Unravel, mimic and control physiology via chiral-induced spin selectivity: a quantum approach
EAGER:通过手性诱导的自旋选择性揭示、模拟和控制生理学:一种量子方法
基本信息
- 批准号:2114144
- 负责人:
- 金额:$ 29.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to unveil and control the “chiral-induced spin selectivity” (CISS) effect at the nanoscale. CISS is an unusual behavior first observed in biological structures, and only later harnessed for technological applications. It describes the fact that, at room temperature, electron transport through molecules with chiral (or mirror) symmetry -- e.g., DNA -- favors particular states of a quantum property called spin. Such a spin preference effectively translates into more efficient electron transport through chiral molecules than through achiral ones, and this property has justifiably attracted significant interest. Enantiomers (chiral molecules that are mirror images of one another) have opposite electron spin orientation preferences, which could inform drug development; and any technology that relies on optimal charge transport – i.e., the entire electronics industry – could profit from harnessing and controlling CISS-like effects. CISS might also have tremendous biological implications for signaling, as proteins and most biomolecules are chiral. This research falls within the emergent field of “quantum biology” that studies how the laws of quantum mechanics might play a role in biological function. This work will foment the creation of the first US-based virtual Quantum Biology Center. Such a center will become a natural organizing structure for quantum biology practitioners to interact, collaborate and disseminate their findings to the broader public. The Center members will demystify and critique potentially dubious claims of quantum effects in biology and place this field on firm scientific ground in the public eye. The Center will also catalyze events such as weekly online meetings on quantum biology, already being organized by the PI for over a year.The chiral-induced spin selectivity (CISS) describes the fact that, at room temperature, charge transport through chiral molecules favors a particular electronic spin orientation (or ‘spin polarization’). Because of the CISS effect, enantiomers have opposite electron spin orientation preferences. This observation might have tremendous biological implications, as proteins and most biomolecules are chiral. An unambiguous understanding of CISS at the nanoscale is still lacking. Here the investigators propose to elucidate the mechanisms behind CISS in DNA at the nanoscale. Currently, CISS is studied using chemistry techniques (ex.: electrochemistry, I-V curves) relying on ensembles of chiral nanostructures interacting with electron spins in “classical states”; this precludes, respectively, quantitative measurements of total charge going through the chiral structures and of how spins in “non-trivial quantum states” (e.g., spin superpositions) evolve when transported through such chiral molecules. The proposed setup – a ESR-STM working with a single chiral molecule that gets injected with electron spins in “non-trivial quantum states” – will overcome the present experimental limitations and thus enable a predictable, quantitative understanding of CISS using the language and tools of quantum mechanics. The investigators will attach DNA under different conditions (e.g., slightly different temperatures, a variety of DNA lengths) to the tip of the ESR-STM and use magnetic resonance techniques to prepare electrons in arbitrary spin states, which will then be injected into the molecule. By characterizing how the electron coherences are transported through the different nano-chiral potentials, it becomes possible to harness quantum degrees of freedom to hijack and drive both physiology and biological signal processing, and to mimic strategies developed and optimized by nature over millions of years to transduce quantum information. This project is supported by the Molecular Biophysics Cluster of the Division of Molecular and Cellular Biosciences in Biological Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在揭示和控制纳米尺度上的“手性诱导自旋选择性”(CISS)效应。CISS是一种首次在生物结构中观察到的不寻常行为,后来才被用于技术应用。它描述了这样一个事实,即在室温下,电子通过具有手性(或镜像)对称性的分子的传输-例如,DNA --倾向于一种叫做自旋的量子特性的特定状态。这种自旋偏好有效地转化为通过手性分子比通过非手性分子更有效的电子传输,并且这种性质已经吸引了大量的兴趣。对映异构体(彼此互为镜像的手性分子)具有相反的电子自旋取向偏好,这可以为药物开发提供信息;任何依赖于最佳电荷传输的技术-即, 整个电子工业都可以从利用和控制类似CISS的效应中获益。由于蛋白质和大多数生物分子都是手性的,因此CISS也可能对信号传导产生巨大的生物学影响。这项研究福尔斯属于新兴的“量子生物学”领域,该领域研究量子力学定律如何在生物功能中发挥作用。这项工作将促成美国第一个虚拟量子生物学中心的建立。这样一个中心将成为量子生物学从业者互动、合作和向更广泛的公众传播他们的发现的自然组织结构。 该中心的成员将揭开神秘面纱,并批评生物学中量子效应的潜在可疑主张,并将这一领域置于公众视野中的坚实科学基础上。该中心还将促进一些活动,如PI已经组织了一年多的量子生物学每周在线会议。手性诱导自旋选择性(CISS)描述了这样一个事实,即在室温下,通过手性分子的电荷传输有利于特定的电子自旋取向(或“自旋极化”)。由于CISS效应,对映体具有相反的电子自旋取向偏好。 这一观察可能具有巨大的生物学意义,因为蛋白质和大多数生物分子都是手性的。在纳米尺度上对CISS的明确理解仍然缺乏。在这里,研究人员建议在纳米尺度上阐明DNA中CISS背后的机制。目前,使用化学技术研究CISS(例如:电化学,I-V曲线)依赖于与“经典态”中的电子自旋相互作用的手性纳米结构的集合;这分别排除了通过手性结构的总电荷的定量测量和“非平凡量子态”中的自旋(例如,自旋叠加)在通过这种手性分子传输时演化。所提出的设置-ESR-STM与单个手性分子一起工作,该分子在“非平凡量子态”中注入电子自旋-将克服目前的实验限制,从而使用量子力学的语言和工具对CISS进行可预测的定量理解。研究人员将在不同的条件下(例如,稍微不同的温度,各种DNA长度)到ESR-STM的尖端,并使用磁共振技术来制备任意自旋状态的电子,然后将其注入分子。通过表征电子相干态如何通过不同的纳米手性势进行传输,可以利用量子自由度来劫持和驱动生理学和生物信号处理,并模仿数百万年来自然界开发和优化的策略来捕获量子信息。该项目由生物科学理事会分子和细胞生物科学部的分子生物物理学小组支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clarice Aiello其他文献
Modernizing Mechatronics course with Quantum Engineering
量子工程现代化机电一体化课程
- DOI:
10.18260/1-2--38241 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Farbod Khoshnoud;Clarice Aiello;Bruno Quadrelli;M. Ghazinejad;Clarence de Silva;Farbod Khoshnoud;Behnam Bahr;Lucas Lamata - 通讯作者:
Lucas Lamata
Magnetic Field Stimulation Affects Vascular Structure and Function Through Direct Influence on Protein Disulfide Isomerase Activity Coupled Cytoskeleton Remodeling
磁场刺激通过直接影响与细胞骨架重塑偶联的蛋白质二硫键异构酶活性来影响血管结构和功能。
- DOI:
10.1016/j.freeradbiomed.2024.10.146 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:8.200
- 作者:
Ricardo Cesar Massucatto;Abasalt Baharami;Daniela Kajihara;Lucas Gutierre;Francisco R. Laurindo;Clarice Aiello;Leonardo Tanaka - 通讯作者:
Leonardo Tanaka
Effects of static magnetic field on vascular function and structure and their potential implications with redox regulation of actin cytoskeleton
静磁场对血管功能和结构的影响及其与肌动蛋白细胞骨架氧化还原调节的潜在关系
- DOI:
10.1016/j.freeradbiomed.2023.10.203 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:8.200
- 作者:
Ricardo Massucatto;Abasalt Baharami;Lucas Gutierre;Clarice Aiello;Francisco R. Laurindo;Leonardo Tanaka - 通讯作者:
Leonardo Tanaka
Clarice Aiello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clarice Aiello', 18)}}的其他基金
RCN: Instrumentation for Quantum Biology (I-QuBio)
RCN:量子生物学仪器 (I-QuBio)
- 批准号:
2105474 - 财政年份:2021
- 资助金额:
$ 29.13万 - 项目类别:
Continuing Grant
EAGER: Measuring and controlling nanoscale interactions in biomatter via quantum degrees of freedom
EAGER:通过量子自由度测量和控制生物物质中的纳米级相互作用
- 批准号:
2041158 - 财政年份:2021
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
相似海外基金
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
- 批准号:
2347542 - 财政年份:2024
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
Collaborative Research: RUI: RESEARCH-PGR Meeting Future Food Demands: Phosphoproteomics to Unravel Signaling Pathways in Soybean's Response to Phosphate and Iron Deficiency
合作研究:RUI:RESEARCH-PGR 满足未来食品需求:磷酸蛋白质组学揭示大豆对磷酸盐和铁缺乏的反应的信号通路
- 批准号:
2329893 - 财政年份:2024
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
Collaborative Research: RUI: RESEARCH-PGR Meeting Future Food Demands: Phosphoproteomics to Unravel Signaling Pathways in Soybean's Response to Phosphate and Iron Deficiency
合作研究:RUI:RESEARCH-PGR 满足未来食品需求:磷酸蛋白质组学揭示大豆对磷酸盐和铁缺乏的反应的信号通路
- 批准号:
2329894 - 财政年份:2024
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
Advanced fluorescence spectroscopy to unravel functional oligomerization of a newly discovered Ca2+ channel and its role in heart failure.
先进的荧光光谱揭示了新发现的 Ca2 通道的功能性寡聚及其在心力衰竭中的作用。
- 批准号:
2885854 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Studentship
CAREER: Leveraging soil viromics to unravel ecological patterns in complex communities
职业:利用土壤病毒组学揭示复杂群落的生态模式
- 批准号:
2236611 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Continuing Grant
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
- 批准号:
10646759 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Active-site models unravel mechanism of enzymatic alkane activation
活性位点模型揭示了酶促烷烃活化的机制
- 批准号:
10711929 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
EXposomic Profiling in Airway disease to uNravel Determinants of disease in Asthma (EXPAND-Asthma) Center
气道疾病暴露组分析以解开哮喘疾病的决定因素 (EXPAND-Asthma) 中心
- 批准号:
10744673 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
Phenotyping doublecortin+ cells to unravel human adult neurogenesis
双皮质素细胞表型分析揭示人类成人神经发生
- 批准号:
DP230101981 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Discovery Projects