CAREER: Learning-Assisted Optimal Power Flow with Confidence
职业:充满信心地学习辅助最佳潮流
基本信息
- 批准号:2041835
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to revolutionize the way electric power grids operate by integrating data-driven techniques into grid operations in order to reliably operate assets on faster time-scales. As more renewable energy is introduced into the grid and as grid operations grow increasingly complex, grid components such as power plants and energy storage must be operated on faster time-scales to balance fluctuations in power and keep the grid operating reliably. This project transforms the traditional optimization problems that grid operators solve by expediting their solution time using historical data and machine learning. The intellectual merits of this project focus on embedding the learning-based solutions into existing grid operations using a hybrid approach, by combining conventional optimization with machine learning. Rather than relying on purely data-driven solutions, grid operators can have increased confidence that the grid can continue to operate reliably under highly renewable energy futures. The broader impacts of the project include a "learning-for-energy" program with scholarship prizes, and publicly released datasets and benchmarks for algorithms emerging in this area of research.In contrast to traditional approximations of these difficult problems that are typically used to address convergence speed and success, this project proposes to leverage data to preserve more complex relationships while maintaining extremely fast computational speeds. Multiple "learning-assisted" algorithms will be developed to enhance various facets of power system operations including stochastic, distributed, and AC optimal power flow. Neural networks in particular can approximate complex functions well and perform inference in milliseconds, but alone, are black-box solutions that may not give grid operators the confidence to use them in real system operation. Here, hybrid approaches that combine optimization and machine learning are taken to determine better warm-starting points for nonconvex solvers, assist the convergence time of distributed optimization techniques, improve convergence success in difficult-to-solve optimal power flow scenarios, and reduce problem complexity in stochastic grid optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF CAREER项目旨在通过将数据驱动技术集成到电网运营中来彻底改变电网运营方式,以便在更快的时间尺度上可靠地运营资产。随着越来越多的可再生能源被引入电网,电网运营变得越来越复杂,电网组件(如发电厂和储能)必须在更快的时间尺度上运行,以平衡功率波动并保持电网可靠运行。该项目通过使用历史数据和机器学习加快解决时间来改变网格运营商解决的传统优化问题。该项目的智力优势集中在使用混合方法将基于学习的解决方案嵌入到现有的网格操作中,将传统的优化与机器学习相结合。电网运营商不必依赖纯粹的数据驱动解决方案,他们可以更有信心地相信,电网可以在高度可再生能源的未来继续可靠地运行。该项目的更广泛的影响包括一个具有奖学金的“学习能源”计划,以及公开发布的数据集和该研究领域新兴算法的基准。与通常用于解决收敛速度和成功的这些困难问题的传统近似相比,该项目提出利用数据来保留更复杂的关系,同时保持极快的计算速度。多个“学习辅助”算法将被开发,以提高电力系统运行的各个方面,包括随机,分布式,交流最佳潮流。特别是神经网络可以很好地近似复杂的函数,并在毫秒内执行推理,但单独使用,是黑盒解决方案,可能无法让网格操作员有信心在真实的系统操作中使用它们。在这里,采用联合收割机优化和机器学习的混合方法来确定非凸求解器的更好的热起点,帮助分布式优化技术的收敛时间,提高难以求解的最优潮流场景中的收敛成功率,该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Analysis of the Reliability of AC Optimal Power Flow Deep Learning Proxies
交流最优潮流深度学习代理的可靠性分析
- DOI:10.1109/isgt-la56058.2023.10328223
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dinh, My H.;Fioretto, Ferdinando;Mohammadian, Mostafa;Baker, Kyri
- 通讯作者:Baker, Kyri
Gradient-enhanced physics-informed neural networks for power systems operational support
用于电力系统运行支持的梯度增强物理信息神经网络
- DOI:10.1016/j.epsr.2023.109551
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Mohammadian, Mostafa;Baker, Kyri;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
Emulating AC OPF Solvers With Neural Networks
使用神经网络模拟 AC OPF 求解器
- DOI:10.1109/tpwrs.2022.3195097
- 发表时间:2022
- 期刊:
- 影响因子:6.6
- 作者:Baker, Kyri
- 通讯作者:Baker, Kyri
OPF-Learn: An Open-Source Framework for Creating Representative AC Optimal Power Flow Datasets
OPF-Learn:用于创建代表性交流最佳潮流数据集的开源框架
- DOI:10.1109/isgt50606.2022.9817509
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Joswig-Jones, Trager;Baker, Kyri;Zamzam, Ahmed S.
- 通讯作者:Zamzam, Ahmed S.
Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization
- DOI:10.1145/3447555.3464874
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:J. Z. Kolter;Neural Network;𝜽 𝝅-;𝒌 𝒙-;𝒌 𝒖-;𝒌 𝒘-
- 通讯作者:J. Z. Kolter;Neural Network;𝜽 𝝅-;𝒌 𝒙-;𝒌 𝒖-;𝒌 𝒘-
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyri Baker其他文献
An optimization framework for the network design of advanced district thermal energy systems
- DOI:
10.1016/j.enconman.2022.115839 - 发表时间:
2022-08-15 - 期刊:
- 影响因子:
- 作者:
Amy Allen;Gregor Henze;Kyri Baker;Gregory Pavlak;Michael Murphy - 通讯作者:
Michael Murphy
Weather-Induced Power Outage Prediction: A Comparison of Machine Learning Models
天气引起的停电预测:机器学习模型的比较
- DOI:
10.1109/smartgridcomm57358.2023.10333953 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jasmine Garland;Kyri Baker;Ben Livneh - 通讯作者:
Ben Livneh
A Framework for Optimizing Lighting in Animal Shelters for Domestic Cats
优化家猫动物收容所照明的框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kendall Baertlein;Jennifer Scheib;Kyri Baker - 通讯作者:
Kyri Baker
Modeling of a Clean Hybrid Energy System Considering Practical Limitations for Techno-Economic Energy Analysis
考虑技术经济能源分析的实际限制的清洁混合能源系统建模
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
James Hurtt;Kyri Baker - 通讯作者:
Kyri Baker
Exploring the importance of environmental justice variables for predicting energy burden in the contiguous United States
探讨环境正义变量对预测美国本土能源负担的重要性
- DOI:
10.1016/j.isci.2025.112559 - 发表时间:
2025-06-20 - 期刊:
- 影响因子:4.100
- 作者:
Jasmine Garland;Kyri Baker;Balaji Rajagopalan;Ben Livneh - 通讯作者:
Ben Livneh
Kyri Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyri Baker', 18)}}的其他基金
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2242930 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Research on personalization of spoken-dialogue-based computer-assisted-language-learning system
基于口语对话的计算机辅助语言学习系统的个性化研究
- 批准号:
23K24962 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
A framework for machine learning assisted directed evolution of plastic-degrading enzymes
机器学习辅助塑料降解酶定向进化的框架
- 批准号:
10059716 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Launchpad
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
- 批准号:
2313768 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226918 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
MRWeight: Medical Residents Learning Weight Management Counseling Skills -- A Multi-Modal, Technology-Assisted, Spaced Education Program
MRWeight:住院医生学习体重管理咨询技能——多模式、技术辅助、间隔教育计划
- 批准号:
10561356 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
- 批准号:
10741596 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
- 批准号:
10564534 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:














{{item.name}}会员




