CAREER: Mechanics of Recyclable Thermoset Polymers
职业:可回收热固性聚合物的力学
基本信息
- 批准号:2042498
- 负责人:
- 金额:$ 51.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant will aim to fundamentally understand the microstructure-property linkages of novel recyclable thermoset polymers (vitrimers). The ubiquity of plastics in our daily lives presents challenges due their potential threats to the environment and natural habitats arising from their low recyclability. Conventional thermoset polymers, whose attractive physical and mechanical properties make them important structural materials, are particularly insidious. The irreversible crosslinking at the molecular level seriously impedes their reprocessing and recycling ability. Novel vitrimer chemistries offer exciting avenues to develop mechanically robust, recyclable thermosets. However, predicting the emergence of defects (microstructure) during reprocessing and their impact on the mechanical characteristics (property) is difficult. The challenge is rooted in unraveling the damage processes associated with the statistics of microscale defect structures resulting from vitrimer chemo-mechanics at various length-scales and time-scales. The research project addresses these principal issues via novel multiscale computational mechanics. Its technological relevance is rooted in the need for a predictive modeling and simulation framework to enable damage-tolerant vitrimers for structural applications. The research program is integrated into a broader educational goal of creating an immersive learning experience at two levels: (i) underrepresented student groups including students with disabilities, (ii) an integration of granular art in education (K-12), and (iii) development of a graduate course on the microstructure-sensitive failure mechanics of materials. Transesterification based covalent adaptive network polymers (vitrimers) derive their reprocessing ability via bond exchange reaction chemistry. An attractive approach to recycling such vitrimers involves pulverizing them into granular powders and reprocessing them via thermomechanical compaction. During this process, individual particles undergo non-linear, dissipative deformation, and welding at inter-particle contact regions through novel chemo-mechanical healing processes. The resulting new solid embodies fingerprints of recycling in the form of micromechanical defect populations. These defect microstructures redefine their viscoelastic stiffening, strengthening, and damage tolerance, which depends on the mechanics at multiple length-scales: (i) granular thermo-chemo-mechanics of healing; (ii) defect micromechanics of damage evolution, and (iii) continuum micromechanics of recycled components. This project will address fundamental questions associated with the mechanics of recycled thermosets via a multiscale computational mechanics platform: (a) at the mesoscale, by discrete element modeling and simulation of granular ensembles endowed with vitrimers chemo-mechanics to quantify emergent statistics of the defect-damage linkages, and (b) at the macroscale, by formulating and computationally implementing a micromechanically informed statistical viscoelastic damage mechanics. The computational frameworks will be calibrated, validated, and assessed against a suite of existing experimental datasets while offering mechanistic predictions for the design of damage-tolerant recyclable thermosets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)补助金旨在从根本上了解新型可回收热固性聚合物(vitrimers)的微观结构-性能联系。塑料在我们日常生活中的普遍存在带来了挑战,因为它们的低回收性对环境和自然栖息地构成了潜在威胁。传统的热固性聚合物,其有吸引力的物理和机械性能使它们成为重要的结构材料,是特别阴险的。分子水平上的不可逆交联严重阻碍了它们的再加工和回收能力。新颖的玻璃化物化学提供了令人兴奋的途径,以开发机械坚固,可回收的热固性材料。然而,预测再加工过程中缺陷(微观结构)的出现及其对机械特性(性能)的影响是困难的。挑战的根源在于解开与微尺度缺陷结构的统计相关的损伤过程,这些缺陷结构是由在各种长度尺度和时间尺度上的玻璃化物化学力学引起的。该研究项目通过新颖的多尺度计算力学解决了这些主要问题。它的技术相关性植根于对预测建模和仿真框架的需求,以使结构应用的损伤容限vitrimers。该研究计划被整合到一个更广泛的教育目标中,即在两个层面上创造沉浸式学习体验:(i)代表性不足的学生群体,包括残疾学生,(ii)将颗粒艺术融入教育(K-12),以及(iii)开发研究生课程材料的微观结构敏感失效力学。基于酯交换反应的共价自适应网络聚合物(vitrimers)通过键交换反应化学获得其再加工能力。一种有吸引力的方法来回收这种玻璃体,包括将它们粉碎成颗粒状粉末,并通过热机械压实对其进行再加工。在此过程中,单个颗粒经历非线性、耗散变形,并通过新颖的化学机械愈合过程在颗粒间接触区域焊接。由此产生的新的固体体现了指纹的回收形式的微机械缺陷人口。这些缺陷的微观结构重新定义其粘弹性硬化,加强和损伤容限,这取决于在多个长度尺度的力学:(i)粒状热化学愈合力学;(ii)损伤演化的缺陷微观力学,和(iii)连续微观力学的回收组件。该项目将通过多尺度计算力学平台解决与回收热固性材料力学相关的基本问题:(a)在中尺度上,通过离散元件建模和模拟赋予了玻璃化物化学力学的颗粒集合,以量化缺陷-损伤联系的紧急统计,以及(B)在宏观尺度上,通过制定和计算实现微机械通知统计粘弹性损伤力学。计算框架将根据一套现有的实验数据集进行校准、验证和评估,同时为耐损伤可回收热固性材料的设计提供机械预测。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shailendra Joshi其他文献
Introduction to the special issue on structural integrity
- DOI:
10.1007/s10704-024-00804-4 - 发表时间:
2024-07-02 - 期刊:
- 影响因子:2.500
- 作者:
Viswanath Chinthapenta;Shailendra Joshi;Srinivasan Chandrasekar - 通讯作者:
Srinivasan Chandrasekar
Intraarterial drug delivery for glioblastoma mutiforme
- DOI:
10.1007/s11060-015-1846-6 - 发表时间:
2015-06-25 - 期刊:
- 影响因子:3.100
- 作者:
Shailendra Joshi;Jason A. Ellis;Eugene Ornstein;Jeffrey N. Bruce - 通讯作者:
Jeffrey N. Bruce
Targeting the Brain
- DOI:
10.1007/s12028-007-0034-8 - 发表时间:
2007-04-20 - 期刊:
- 影响因子:3.600
- 作者:
Shailendra Joshi;Eugene Ornstein;Jeffrey N. Bruce - 通讯作者:
Jeffrey N. Bruce
Shailendra Joshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shailendra Joshi', 18)}}的其他基金
Collaborative Research: Multiscale Modeling of Damage Tolerance in Hexagonal Materials
合作研究:六边形材料损伤容限的多尺度建模
- 批准号:
1932976 - 财政年份:2019
- 资助金额:
$ 51.67万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Continuing Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
- 批准号:
2331994 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
- 批准号:
EP/X027163/2 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Fellowship
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
- 批准号:
BB/Y003896/1 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
- 批准号:
EP/Y002415/1 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Research Grant
Control of endothelial cell mechanics and blood vessel remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
- 批准号:
23K23887 - 财政年份:2024
- 资助金额:
$ 51.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)