Collaborative Research: Multiscale Modeling of Damage Tolerance in Hexagonal Materials
合作研究:六边形材料损伤容限的多尺度建模
基本信息
- 批准号:1932976
- 负责人:
- 金额:$ 24.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hexagonal close-packed crystalline (hexagonal) metals are widely employed in industrial and biomedical sectors, e.g. as fuel rods in nuclear power plants (zirconium alloys); medical stents and dental applications (titanium and magnesium alloys); compressor and turbine disks and blades in power generation systems and jet engines (titanium alloys) and in cryogenic fuel tanks and space telescope mirrors (beryllium alloys) among many others. Yet, there currently are no material modeling frameworks that can be used to make robust engineering projections regarding their durability and damage tolerance. This award supports fundamental research addressing this critical gap and focus is laid on predictive modeling of strength and ductility limits. The outcomes of this research will not only advance life assessment procedures but also avoid material waste in processing and manufacturing operations. The models and simulation tools to be developed will provide engineers with means of predicting the mechanical response of metallic structures under complex loading conditions, both during manufacturing and in service. In addition, fundamental understanding gained from this research will help alloy and microstructure designers develop damage-tolerant materials by defeating the controlling mechanisms rather than following trial-and-error approaches. In addition, the PIs will engage undergraduate students in this research program and develop lectures and accompanying material for a summer school aimed at empowering the next generation of mechanical engineers with computational mechanics and materials science tools. Improved understanding of the slip and twinning mechanisms in hexagonal metals has led to advances in constitutive modeling of their damage-free plasticity. However, micromechanics-based models that couple plasticity with damage remain to be developed. One challenge is to assess the extent of crystallographic detail that must be incorporated in a damage model. Another, equally important issue is one of representation of the damage process. Recent experiments have clearly shown that hexagonal alloys do fail by void nucleation, growth and coalescence. With the goal of a parameter-free formulation of damage and fracture, this collaborative research aims at fundamental investigations of ductile damage in hexagonal materials under general stress states by - (i) investigating the role of deformation mechanisms on micro-void growth and coalescence using three-dimensional crystal plasticity unit cell simulations, (ii) formulating a novel, computationally efficient micromechanics-based anisotropic porous multi-surface model, fully assessed against the unit cell calculations, and (iii) critically assessing the so-developed anisotropic damage model against existing experimental data for magnesium alloys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
六方密排晶体(六方)金属广泛用于工业和生物医学领域,例如作为核电站中的燃料棒(锆合金);医疗支架和牙科应用(钛和镁合金);发电系统和喷气发动机中的压缩机和涡轮机盘和叶片(钛合金)以及低温燃料箱和太空望远镜反射镜(铍合金)等。然而,目前还没有材料建模框架可用于对其耐久性和损伤容限进行稳健的工程预测。该奖项支持解决这一关键差距的基础研究,重点是强度和延展性极限的预测建模。这项研究的成果不仅将推进寿命评估程序,还将避免加工和制造过程中的材料浪费。待开发的模型和仿真工具将为工程师提供在制造和使用过程中预测金属结构在复杂载荷条件下的机械响应的方法。此外,从这项研究中获得的基本理解将有助于合金和微观结构设计人员通过击败控制机制而不是遵循试错法来开发损伤容限材料。此外,PI将让本科生参与这项研究计划,并为暑期学校开发讲座和配套材料,旨在为下一代机械工程师提供计算力学和材料科学工具。对六方晶系金属中滑移和孪生机制的进一步理解,导致了其无损伤塑性本构模型的进展。然而,微观力学为基础的模型,耦合塑性与损伤仍有待开发。一个挑战是评估晶体学的细节,必须纳入损伤模型的程度。另一个同样重要的问题是损害过程的表现。最近的实验已经清楚地表明,六角合金确实会因空穴成核、生长和聚结而失效。以损伤和断裂的无参数公式为目标,这项合作研究旨在通过以下方式对一般应力状态下六角材料中的韧性损伤进行基础研究:(i)使用三维晶体塑性晶胞模拟研究变形机制对微孔洞生长和合并的作用,(ii)制定一种新的,计算效率高的基于微观力学的各向异性多孔多表面模型,充分评估对单位细胞计算,及(iii)审慎评估该等-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A crystal plasticity investigation of grain size-texture interaction in magnesium alloys
镁合金晶粒尺寸-织构相互作用的晶体塑性研究
- DOI:10.1016/j.actamat.2021.116743
- 发表时间:2021
- 期刊:
- 影响因子:9.4
- 作者:Ravaji, Babak;Joshi, Shailendra P.
- 通讯作者:Joshi, Shailendra P.
On the micromechanics of voids in nanotwinned materials
- DOI:10.1016/j.jmps.2022.104887
- 发表时间:2022-08
- 期刊:
- 影响因子:5.3
- 作者:Kartikey Joshi;S. Joshi
- 通讯作者:Kartikey Joshi;S. Joshi
On the Role of Crystallographic Anisotropy and Texture in Damage Tolerance of Magnesium and Its Alloys
晶体各向异性和织构对镁及其合金损伤耐受性的作用
- DOI:10.1007/978-3-030-65528-0_14
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Baweja, Shahmeer;Indurkar, Padmeya;Joshi, Shailendra P.
- 通讯作者:Joshi, Shailendra P.
Three-dimensional computational characterization of grain size and texture effects in magnesium alloys
- DOI:10.1016/j.jma.2023.09.014
- 发表时间:2023-10-01
- 期刊:
- 影响因子:17.6
- 作者:Baweja, Shahmeer;Joshi, Shailendra P.
- 通讯作者:Joshi, Shailendra P.
Predicting textural variability effects in the anisotropic plasticity and stability of hexagonal metals: Application to magnesium and its alloys
- DOI:10.1016/j.ijplas.2020.102762
- 发表时间:2020-09
- 期刊:
- 影响因子:9.8
- 作者:Padmeya P. Indurkar;Shahmeer Baweja;R. Pérez;S. Joshi
- 通讯作者:Padmeya P. Indurkar;Shahmeer Baweja;R. Pérez;S. Joshi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shailendra Joshi其他文献
Introduction to the special issue on structural integrity
- DOI:
10.1007/s10704-024-00804-4 - 发表时间:
2024-07-02 - 期刊:
- 影响因子:2.500
- 作者:
Viswanath Chinthapenta;Shailendra Joshi;Srinivasan Chandrasekar - 通讯作者:
Srinivasan Chandrasekar
Intraarterial drug delivery for glioblastoma mutiforme
- DOI:
10.1007/s11060-015-1846-6 - 发表时间:
2015-06-25 - 期刊:
- 影响因子:3.100
- 作者:
Shailendra Joshi;Jason A. Ellis;Eugene Ornstein;Jeffrey N. Bruce - 通讯作者:
Jeffrey N. Bruce
Targeting the Brain
- DOI:
10.1007/s12028-007-0034-8 - 发表时间:
2007-04-20 - 期刊:
- 影响因子:3.600
- 作者:
Shailendra Joshi;Eugene Ornstein;Jeffrey N. Bruce - 通讯作者:
Jeffrey N. Bruce
Shailendra Joshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shailendra Joshi', 18)}}的其他基金
CAREER: Mechanics of Recyclable Thermoset Polymers
职业:可回收热固性聚合物的力学
- 批准号:
2042498 - 财政年份:2021
- 资助金额:
$ 24.32万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 24.32万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 24.32万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 24.32万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 24.32万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 24.32万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation
合作研究:多尺度心肌细胞机械适应
- 批准号:
2230435 - 财政年份:2023
- 资助金额:
$ 24.32万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 24.32万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 24.32万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
- 批准号:
2331017 - 财政年份:2023
- 资助金额:
$ 24.32万 - 项目类别:
Standard Grant
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
- 批准号:
2316676 - 财政年份:2023
- 资助金额:
$ 24.32万 - 项目类别:
Continuing Grant