CAREER: Atomically Manipulated Quantum Materials

职业:原子操纵量子材料

基本信息

项目摘要

Non-technical DescriptionThis research addresses the increasing demand for faster and more efficient ways to process and transfer information by developing materials that use light instead of electrons. This will be realized by controlling light-matter interactions down to the single-atom level, which will result in more powerful and scalable devices for computation and communication. Such atomic precision has long been an elusive goal, but now there are methods to reach it by using focused beams of high-energy electrons. The team will employ these tools to directly manipulate the atomic structure of solids and create useful light emitting centers. In this project, the group will establish a theoretical and experimental research program to investigate the new properties resulting from altering the atomic structure of so-called two-dimensional materials, namely materials that are only one atom thick. The PI’s long-term research goal is to control light-matter interactions down to an extremely small scale, the nanoscale, to develop new materials and devices for faster computing and sensing. The research activity of this project will be integrated with educational outreach to local, disadvantaged secondary schools and the large underrepresented minority population at the City University of New York. These educational activities will demystify and teach quantum technology at multiple educational levels. Underrepresented students at different levels will take part in cutting-edge research opportunities that will help them to better prepare for college and careers in science, technology, engineering, and mathematics (STEM). The team will collaborate with science teachers at local high schools to create a program based on quantum science that connects younger generations and underrepresented groups with advanced research. The goal is to increase these students’ participation in quantum research and STEM and equip them to become active players in the future of society.Technical Description The overarching goal of this research is to establish a theoretical and experimental research activity to characterize and control with unprecedented precision solid-state emitters, such as excitons and atom-like systems, in atomically-patterned two-dimensional materials. The PI combines high resolution transmission electron microscopy, advanced image analysis based on neural networks, high resolution imaging and spectroscopy to create regular networks of active defects in two-dimensional materials and study light-matter interactions in these new systems. Two objectives drive this research: (i) Shape the exciton potential landscape in two-dimensional semiconductors to design multifunctional atomic-scale excitonic circuits. By engineering the dielectric function through atomic manipulation, the PI is pioneering methods for controlling exciton confinement, interaction, and emission with specifically designed atomic superlattices and traps that, combined together, create functional atomic circuits for enhanced exciton transport and coherence. (ii) Tailor the single-photon emission of deterministically produced structural defects in 2D materials. Answering fundamental questions about the nature of single-photon emitters may open pathways to new quantum regimes arising from large-scale emitter arrays with controlled interaction and integration with photonic resonators. The proposed approach has the potential to change the landscape of solid-state quantum technologies, providing a new level of scientific understanding of quantum materials as well as the tools to produce and control them. By targeting the building blocks of many optical devices, this project will establish quantum photonics as a reliable and inherently powerful technology for metrology, communication, and information processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述这项研究通过开发使用光而不是电子的材料来解决对更快,更有效地处理和传输信息的日益增长的需求。这将通过将光与物质的相互作用控制到单原子水平来实现,这将产生更强大且可扩展的计算和通信设备。这种原子精度长期以来一直是一个难以实现的目标,但现在有方法通过使用高能电子的聚焦束来实现它。该团队将利用这些工具直接操纵固体的原子结构,并创建有用的发光中心。在这个项目中,该小组将建立一个理论和实验研究计划,以研究改变所谓的二维材料(即只有一个原子厚度的材料)的原子结构所产生的新特性。PI的长期研究目标是将光-物质相互作用控制到极小的尺度,即纳米尺度,以开发新材料和设备,以实现更快的计算和传感。该项目的研究活动将与教育推广活动结合起来,推广到当地条件不利的中学和纽约城市大学人数不足的大量少数民族。这些教育活动将揭开量子技术的神秘面纱,并在多个教育层次上教授量子技术。不同层次的代表性不足的学生将参加尖端研究机会,这将有助于他们更好地为科学,技术,工程和数学(STEM)的大学和职业做准备。 该团队将与当地高中的科学教师合作,创建一个基于量子科学的项目,将年轻一代和代表性不足的群体与先进的研究联系起来。其目的是提高这些学生在量子研究和STEM领域的参与度,使他们成为未来社会的积极参与者。技术说明本研究的总体目标是建立一个理论和实验研究活动,以前所未有的精度表征和控制原子图案化二维材料中的激子和类原子系统等固态发射体。PI结合了高分辨率透射电子显微镜,基于神经网络的先进图像分析,高分辨率成像和光谱学,以在二维材料中创建规则的活性缺陷网络,并研究这些新系统中的光-物质相互作用。两个目标驱动这项研究:(i)塑造二维半导体中的激子势景观,以设计多功能的原子级激子电路。通过原子操作来设计介电函数,PI开创了控制激子限制,相互作用和发射的方法,特别设计的原子超晶格和陷阱,结合在一起,创建功能性原子电路,以增强激子传输和相干性。(ii)定制2D材料中确定性产生的结构缺陷的单光子发射。探究关于单光子发射器的性质的基本问题可能会为新的量子机制开辟道路,这些量子机制来自于具有受控相互作用和与光子谐振器集成的大规模发射器阵列。所提出的方法有可能改变固态量子技术的前景,为量子材料的科学理解以及生产和控制它们的工具提供新的水平。通过瞄准许多光学器件的构建模块,该项目将把量子光子学确立为计量、通信和信息处理领域的可靠且内在强大的技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges
  • DOI:
    10.1186/s43593-022-00018-y
  • 发表时间:
    2022-07-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Mingsong;Hu, Guangwei;Alu, Andrea
  • 通讯作者:
    Alu, Andrea
Visualization of Dark Excitons in Semiconductor Monolayers for High-Sensitivity Strain Sensing
  • DOI:
    10.1021/acs.nanolett.2c00436
  • 发表时间:
    2022-04-13
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Chand, Saroj B.;Woods, John M.;Grosso, Gabriele
  • 通讯作者:
    Grosso, Gabriele
35 challenges in materials science being tackled by PIs under 35(ish) in 2021
2021 年 35 岁以下的 PI 将解决材料科学领域的 35 项挑战
  • DOI:
    10.1016/j.matt.2021.11.003
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Aguado, Brian;Bray, Laura J.;Caneva, Sabina;Correa-Baena, Juan-Pablo;Di Martino, Giuliana;Fang, Chengcheng;Fang, Yin;Gehring, Pascal;Grosso, Gabriele;Gu, Xiaodan
  • 通讯作者:
    Gu, Xiaodan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabriele Grosso其他文献

Valley polaritons
谷极化激元
  • DOI:
    10.1038/nphoton.2017.135
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Gabriele Grosso
  • 通讯作者:
    Gabriele Grosso
Elementary excitations of single-photon emitters in hexagonal boron nitride.
六方氮化硼中单光子发射器的基本激发。
  • DOI:
    10.1038/s41563-024-01866-4
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    J. Pelliciari;Enrique Mejia;John M. Woods;Yanhong Gu;Jiemin Li;S. Chand;Shiyu Fan;Kenji Watanabe;T. Taniguchi;V. Bisogni;Gabriele Grosso
  • 通讯作者:
    Gabriele Grosso
Elementary excitations of quantum emitters in two-dimensional hexagonal Boron Nitride*
二维六方氮化硼中量子发射器的基本激发*

Gabriele Grosso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    2403736
  • 财政年份:
    2024
  • 资助金额:
    $ 53.78万
  • 项目类别:
    Standard Grant
AtomCat4Fuel: Atomically construction of AuPd catalyst for efficient CO2 hydrogenation to ethanol
AtomCat4Fuel:原子构建 AuPd 催化剂,用于高效 CO2 加氢生成乙醇
  • 批准号:
    EP/Y029305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.78万
  • 项目类别:
    Fellowship
CAREER: Atomically-Precise Single Photon Emitters
职业:原子级精确的单光子发射器
  • 批准号:
    2340398
  • 财政年份:
    2024
  • 资助金额:
    $ 53.78万
  • 项目类别:
    Continuing Grant
Harnessing Interlayer Biexcitons in Atomically Thin Heterostructures
利用原子薄异质结构中的层间双激子
  • 批准号:
    DP240101011
  • 财政年份:
    2024
  • 资助金额:
    $ 53.78万
  • 项目类别:
    Discovery Projects
Liquid metal solvents for high entropy and atomically configured systems
用于高熵和原子配置系统的液态金属溶剂
  • 批准号:
    DP240101086
  • 财政年份:
    2024
  • 资助金额:
    $ 53.78万
  • 项目类别:
    Discovery Projects
Development of atomically precise nano-molecular composite for investigation and exploration of their structure and properties
开发原子级精确的纳米分子复合材料,用于研究和探索其结构和性能
  • 批准号:
    23H01917
  • 财政年份:
    2023
  • 资助金额:
    $ 53.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optical properties and device physics of mixed-dimensional heterostructures constructed from atomically defined nanomaterials
由原子定义的纳米材料构建的混合维异质结构的光学特性和器件物理
  • 批准号:
    23H00262
  • 财政年份:
    2023
  • 资助金额:
    $ 53.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 53.78万
  • 项目类别:
    ARC Future Fellowships
Elucidation of electrocatalytic activity of atomically precise metal clusters for the creation of highly active energy and environmental catalysts
阐明原子精确金属簇的电催化活性,用于创建高活性能源和环境催化剂
  • 批准号:
    23KK0098
  • 财政年份:
    2023
  • 资助金额:
    $ 53.78万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
ATomicallY Precise nanorIbbons QUAntum pLatform
原子级精确纳米带量子平台
  • 批准号:
    10076990
  • 财政年份:
    2023
  • 资助金额:
    $ 53.78万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了