CAREER: Atomically-Precise Single Photon Emitters
职业:原子级精确的单光子发射器
基本信息
- 批准号:2340398
- 负责人:
- 金额:$ 63.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-15 至 2029-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical Description:The ability to characterize and control matter at small length-scales is a critical capability for the advancement of technologies, specifically for technologies which harness quantum mechanical behavior. Such quantum technologies are poised to revolutionize how we transmit and process data. A key component of many quantum technologies is a special type of light emitter called a single photon emitter (SPE). One major problem facing the practical implementation of SPEs in modern technologies is the variability of performance between nominally identical SPEs. It is critical to understand and minimize these sources of variability. The research goal of this project is to develop experimental techniques based on atomic force microscope (AFM) that provide atomic-scale characterization and control, and accelerate the development of SPEs. An AFM is a tool which uses a sharp tip to mechanically interact with the sample surface. This research uses AFMs to measure and manipulate the mechanical and electronic properties of materials to understand the interplay between mechanical strain, material imperfections, and quantum behavior. This project also supports development and dissemination of training materials that teach researchers how to use advanced AFM measurements in their research. Additionally, the principal investigator develops and implements laboratory projects related to materials science and AFMs that are geared to students ranging from middle school through graduate school, with the intention of inspiring and training students in materials research.Technical Description:The goal of this project is to develop atomic force microscope (AFM) capabilities that accelerate the discovery and development of nanomaterials for applications in quantum technologies and electronics. A key component of many quantum technologies is a single photon emitter (SPE). Two-dimensional materials (2DM), such as tungsten diselenide and hexagonal boron nitride, have emerged as promising candidates for solid-state SPE hosts. However, for 2DM SPEs to become technologically viable it is essential to understand and control these materials at the atomic scale. Unfortunately, there are no experimental tools capable of simultaneously addressing the key factors of nano-scale strain, atomic defects, and interlayer effects from surrounding materials. The research goal of this proposal is to develop and use a suite of novel AFM techniques to achieve atomic-scale characterization and control of 2DM in conjunction with optical characterization to understand the fundamental origin and sources of variability in 2DM SPEs, which is a critical step toward realizing 2DM SPEs with sufficient attributes and repeatability to be useful in technologies. In contrast to prior work in this area, this research focuses on measurements at the atomic scale, which reveals heterogeneities that have not been adequately considered in the past. In addition to insights into SPE behavior, the general framework developed in this research enables 2DM researchers to obtain knowledge about strain, defects, and substrate interactions at the atomic scale, which has far-reaching impacts in the understanding of 2DM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:在小尺度上表征和控制物质的能力是技术进步的关键能力,特别是对于利用量子力学行为的技术。这种量子技术有望彻底改变我们传输和处理数据的方式。许多量子技术的关键组成部分是一种特殊类型的光发射器,称为单光子发射器(SPE)。在现代技术中SPE的实际实现所面临的一个主要问题是名义上相同的SPE之间的性能的可变性。理解并尽量减少这些可变性来源至关重要。本项目的研究目标是开发基于原子力显微镜(AFM)的实验技术,提供原子尺度的表征和控制,并加速SPE的发展。原子力显微镜是一种工具,它使用锋利的尖端与样品表面机械相互作用。这项研究使用AFM来测量和操纵材料的机械和电子特性,以了解机械应变,材料缺陷和量子行为之间的相互作用。该项目还支持开发和传播培训材料,教导研究人员如何在他们的研究中使用先进的AFM测量。此外,还开发和实施了材料科学和原子力显微镜(AFM)相关的实验室项目,面向从中学到研究生院的学生,旨在激发和培养学生的材料研究。技术说明:本项目的目标是开发原子力显微镜(AFM)功能,以加速量子技术和电子学应用的纳米材料的发现和开发。许多量子技术的关键组件是单光子发射器(SPE)。二维材料(2DM),如二硒化钨和六方氮化硼,已成为固态SPE主机的有前途的候选人。然而,为了使2DM SPE在技术上可行,必须在原子尺度上理解和控制这些材料。不幸的是,没有实验工具能够同时解决纳米尺度应变,原子缺陷和周围材料的层间效应的关键因素。该提案的研究目标是开发和使用一套新的AFM技术,以实现原子尺度的表征和控制的2DM结合光学表征,以了解基本的起源和来源的变化,在2DM SPE,这是实现2DM SPE具有足够的属性和可重复性,是有用的技术的关键一步。与这一领域的先前工作相比,本研究侧重于原子尺度的测量,这揭示了过去没有充分考虑的异质性。除了对SPE行为的深入了解外,本研究中开发的一般框架使2DM研究人员能够获得原子尺度下有关应变、缺陷和基底相互作用的知识,这对理解2DM具有深远的影响。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rosenberger其他文献
Matthew Rosenberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
- 批准号:
2403736 - 财政年份:2024
- 资助金额:
$ 63.29万 - 项目类别:
Standard Grant
ATomicallY Precise nanorIbbons QUAntum pLatform
原子级精确纳米带量子平台
- 批准号:
10076990 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
EU-Funded
Development of atomically precise nano-molecular composite for investigation and exploration of their structure and properties
开发原子级精确的纳米分子复合材料,用于研究和探索其结构和性能
- 批准号:
23H01917 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of electrocatalytic activity of atomically precise metal clusters for the creation of highly active energy and environmental catalysts
阐明原子精确金属簇的电催化活性,用于创建高活性能源和环境催化剂
- 批准号:
23KK0098 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation
合作研究:DMREF:用于选择性键激活的原子精确催化剂设计
- 批准号:
2323701 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Standard Grant
Atomically precise, multi-ligand functionalised metal nanoclusters to combat bacterial antibiotic resistance
原子精确的多配体功能化金属纳米簇可对抗细菌抗生素耐药性
- 批准号:
2882405 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Studentship
Atomically Precise Synthesis of Supported Au Cluster Catalysts using Ligand–Support Interactions
使用配体原子级精确合成负载型金簇催化剂
- 批准号:
23K13617 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FuSe-TG: Atomically Precise Graphene Nanoribbon-based Transistors: Materials, Devices, Circuits, and Systems
FuSe-TG:原子级精确石墨烯纳米带晶体管:材料、器件、电路和系统
- 批准号:
2235143 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Standard Grant
GCR: Rational Design of Topological Insulators using Atomically-Precise DNA Self-Assembly
GCR:利用原子精确的 DNA 自组装技术合理设计拓扑绝缘体
- 批准号:
2317843 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation
合作研究:DMREF:用于选择性键激活的原子精确催化剂设计
- 批准号:
2323700 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Standard Grant