CAREER: Tissue engineering of developing human heart: The role of microenvironment in cardiac development and congenital heart disease
职业:人类心脏发育的组织工程:微环境在心脏发育和先天性心脏病中的作用
基本信息
- 批准号:2044657
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The developing human heart has a remarkable ability to transform itself under a variety of influences, including blood flow, tissue biomechanics, and tissue composition. Alterations in these parameters may result in abnormal growth of the heart, increasing the incidence of congenital (present at or before birth) heart disease. The overall goal of this CAREER project is to utilize advanced bioengineering tools, including 3D bioprinting and human induced pluripotent stem cell technologies, to create bioartificial tissue constructs that can serve as high-fidelity models of the human heart. The engineered models serve as a research enabling platform to examine cellular processes involved in normal development of the human heart as well as the formation of various heart defects. The research will be integrated with multiple educational programs geared towards building a dynamic scientific community in the joint biomedical engineering program at Emory University and Georgia Institute of Technology. The fundamental biomaterials design and bioprinting, stem cell culture and differentiation, and cardiac cellular biology principles will be integrated into various educational activities. Education plans include design and development of educational tools and outreach to local high school students through (A) a joint summer internship program; (B) bi-annual biomedical science and engineering exhibitions; and (C) outreach activities in the Children's Heart Research and Outcomes (HeRO) Center at Emory University. Further, the project includes plans to develop a new summer hybrid course that is specifically designed to introduce the basic principles of 3D bioprinting and its use in various biomedical applications.The investigator’s research focus is on using a multidisciplinary approach to design and develop micro/nano-scale tissue engineering technologies with the ultimate goal of generating functional bioartificial tissues and organs. Toward this goal, this CAREER project focuses on: (1) Engineering 3D in vitro developing human heart models (3D-iDHHs)--embryonic, fetal, neonatal and adult--using human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) and endothelial cells (ECs) that display functional maturity/stability for several weeks; and (2) Evaluating the ability of 3D-iDHHs to decipher clinically relevant mechanisms of congenital heart diseases (CHDs), e.g., hypoplastic left heart syndrome and dilated cardiomyopathy. A state-of-the-art 3D bioprinting systems will be used to build devices, allowing precise control of the tissue microenvironment to achieve functional and structural biomimicry. The project will build upon preliminary achievements to create various perfusable 3D cardiac tissue constructs utilizing hiPSC-derived cardiac cells to reconstruct the dynamic microenvironment of the developing human heart. Multi-material 3D bioprinting enables creating perfusable heart chamber-like constructs, allowing for exposure of cardiac cells to varying environmental factors such as flow hemodynamics, stiffness, and tissue composition (Aim 1). The project will then explore the utility of these 3D-iDHHs to decipher microenvironmental mechanisms underlying CHDs (Aim 2). This research could ultimately lead to the development of novel and more effective clinical interventions and/or therapeutics to treat various CHDs. More broadly, this device could be integrated with other tissue/organ models in a human-on-a-chip for a systems-level understanding of various developmental disorders.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发育中的人类心脏具有在各种影响下改变自身的显著能力,包括血流、组织生物力学和组织组成。这些参数的改变可能导致心脏的异常生长,增加先天性(出生时或出生前)心脏病的发病率。CAREER项目的总体目标是利用先进的生物工程工具,包括3D生物打印和人类诱导多能干细胞技术,创建可作为人类心脏高保真模型的生物人工组织结构。这些工程模型作为一个研究平台,可以检查参与人类心脏正常发育的细胞过程以及各种心脏缺陷的形成。该研究将与多个教育项目相结合,旨在建立一个充满活力的科学社区,在埃默里大学和格鲁吉亚理工学院的联合生物医学工程项目。基本的生物材料设计和生物打印,干细胞培养和分化,以及心脏细胞生物学原理将被整合到各种教育活动中。教育计划包括设计和开发教育工具,并通过以下方式向当地高中学生推广:(A)联合暑期实习计划;(B)两年一度的生物医学科学和工程展览;以及(C)埃默里大学儿童心脏研究和成果中心(HeRO)的推广活动。此外,该项目还计划开发一个新的夏季混合课程,专门介绍3D生物打印的基本原理及其在各种生物医学应用中的应用。研究人员的研究重点是使用多学科方法设计和开发微/纳米尺度的组织工程技术,最终目标是生成功能性生物人工组织和器官。为了实现这一目标,这个CAREER项目的重点是:(1)工程3D体外开发人类心脏模型(3D-iDHH)-胚胎、胎儿、新生儿和成人-使用人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)和内皮细胞(EC),其显示功能成熟/稳定数周;以及(2)评估3D-iDHH解读先天性心脏病(CHD)的临床相关机制的能力,例如,左心发育不全综合征和扩张型心肌病。最先进的3D生物打印系统将用于构建设备,允许精确控制组织微环境,以实现功能和结构仿生。 该项目将建立在初步成果的基础上,利用hiPSC衍生的心脏细胞创建各种可灌注的3D心脏组织结构,以重建发育中的人类心脏的动态微环境。多材料3D生物打印能够创建可灌注的心脏腔室样结构,允许心脏细胞暴露于不同的环境因素,如流动血液动力学,硬度和组织成分(目标1)。然后,该项目将探索这些3D-iDHH的实用性,以破译CHD背后的微环境机制(目标2)。这项研究可能最终导致开发新的和更有效的临床干预和/或治疗方法来治疗各种CHD。 更广泛地说,该设备可以与其他组织/器官模型集成在人体芯片中,以实现对各种发育障碍的系统级理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Abstract 550: Magnetic Nanoparticle-mediated Targeting Of Endothelium To Address Restenosis In A Bioprinted In Vitro Model Of Pulmonary Arteries
摘要 550:磁性纳米颗粒介导的内皮靶向解决肺动脉生物打印体外模型中的再狭窄问题
- DOI:10.1161/atvb.42.suppl_1.550
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ning, Liqun;Tomov, Martin L;Zanella, Stefano;Zambrano, Byron;Avazmohammadi, Reza;Mahmoudi, Morteza;Bauser-Heaton, Holly;Serpooshan, Vahid
- 通讯作者:Serpooshan, Vahid
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vahid Serpooshan其他文献
Tissue engineered drug delivery vehicles: Methods to monitor and regulate the release behavior
组织工程化药物输送载体:监测和调节释放行为的方法
- DOI:
10.1016/j.jconrel.2022.04.044 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:11.500
- 作者:
Carmen J. Gil;Lan Li;Boeun Hwang;Melissa Cadena;Andrea S. Theus;Tyler A. Finamore;Holly Bauser-Heaton;Morteza Mahmoudi;Ryan K. Roeder;Vahid Serpooshan - 通讯作者:
Vahid Serpooshan
Bioengineering Approaches to In Vitro Modeling of Genetic and Acquired Cardiac Diseases
- DOI:
10.1007/s11886-025-02218-7 - 发表时间:
2025-03-20 - 期刊:
- 影响因子:3.300
- 作者:
Linqi Jin;Boeun Hwang;Sarah Rezapourdamanab;Vani Sridhar;Roshni Nandwani;Mehdi Salar Amoli;Vahid Serpooshan - 通讯作者:
Vahid Serpooshan
3D Bioprinted Cardiac Patch Devices for Regenerative Therapies
- DOI:
10.1007/s11936-025-01074-6 - 发表时间:
2025-01-31 - 期刊:
- 影响因子:0.600
- 作者:
Boeun Hwang;Linqi Jin;Melissa A. Cadena;Holly D. Bauser-Heaton;Vahid Serpooshan - 通讯作者:
Vahid Serpooshan
Engineering of pulmonary surfactant corona on inhaled nanoparticles to operate in the lung system
在吸入纳米颗粒上构建肺表面活性剂冠状物以在肺部系统中发挥作用的工程
- DOI:
10.1016/j.nantod.2023.101998 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:10.900
- 作者:
Mojtaba Falahati;Anwarul Hasan;Hojjat Alizadeh Zeinabad;Vahid Serpooshan;J.H. von der Thüsen;Timo L.M. ten Hagen - 通讯作者:
Timo L.M. ten Hagen
Vahid Serpooshan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
- 批准号:
2337387 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Harnessing Multiscale Biophysical Cues for Engineering Adult Heart Tissue
职业:利用多尺度生物物理线索工程成人心脏组织
- 批准号:
2144374 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Decoding the Developmental Extracellular Niche for Instructing Lung Tissue Engineering
职业:解码发育细胞外生态位以指导肺组织工程
- 批准号:
2145181 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Tissue Engineering Better Cell Therapies for Wound Healing.
职业:组织工程更好的细胞疗法促进伤口愈合。
- 批准号:
2040657 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Tissue engineering hematopoietic trabecular bone marrow
职业:组织工程造血小梁骨髓
- 批准号:
1944188 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Graphene as a Bioscaffold for Musculoskeletal Tissue Engineering
职业:石墨烯作为肌肉骨骼组织工程的生物支架
- 批准号:
1848516 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Tissue Engineering Better Cell Therapies for Wound Healing.
职业:组织工程更好的细胞疗法促进伤口愈合。
- 批准号:
1752079 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Manufacturing Tools for the Next Generation of Tissue Engineering, Manufacturing Education for the Next Generation of Engineers
职业:下一代组织工程的制造工具、下一代工程师的制造教育
- 批准号:
1552358 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Manufacturing Tools for the Next Generation of Tissue Engineering, Manufacturing Education for the Next Generation of Engineers
职业:下一代组织工程的制造工具、下一代工程师的制造教育
- 批准号:
1708819 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: In Silico Tissue Engineering: An Active-Learning Computational Methodology to Guide the Design of Tissue Scaffolds
职业:计算机组织工程:指导组织支架设计的主动学习计算方法
- 批准号:
1350090 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Standard Grant