CAREER: Graphene as a Bioscaffold for Musculoskeletal Tissue Engineering
职业:石墨烯作为肌肉骨骼组织工程的生物支架
基本信息
- 批准号:1848516
- 负责人:
- 金额:$ 55.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
TECHNICAL ABSTRACTThe purpose of this NSF CAREER Award is to enrich scientific understanding of basic principles governing stem cell biology by using novel approaches to investigate the emerging role of atomically thin materials such as graphene in controlling stem cell fate. To accomplish this, the principle investigator will integrate functionally patterned graphene and graphene derivatives into bioscaffolds to control and measure the fundamental biophysical cues that encode information for human mesenchymal stem cell (hMSC) growth and differentiation. Electrical connections to the graphene bioscaffolds will serve to modulate temperature and electrical fields while also actively monitoring the electrochemical exchange at the cell-graphene interface during growth and differentiation. In order to elucidate graphene's structure-property-processing correlations on hMSC differentiation, genetic profiles will be compared for hMSC growth on epitaxial graphene on SiC substrates, polycrystalline graphene films grown by chemical vapor deposition on copper foils, and graphene films printed from chemically exfoliated graphene nanoflakes. Electrical bias applied to the graphene films will be used to monitor the effect of transmembrane voltage on hMSC fate, as well as the impact of electrical signals on extracellular matrix production and the mechanical properties of engineered musculoskeletal tissue. Intellectual Merit: The fundamental knowledge gained will enable a complete set of design rules for electrically active bioscaffolds that can couple or decouple biophysical cues responsible for stem cell growth and differentiation. The data produced through these experiments will be made publicly available to further advance in silico research of biomolecular processes and subsequent integration in virtual physiological human models. Broader Impacts: By integrating graphene into the tissue engineering cycle, potentially transformational outcomes will likely include new instrumentation for stem cell culture, new multifunctional bioscaffold materials, and new research avenues for tissue engineering and regenerative medicine. Integrated educational outreach activities leverage a local dual-language immersion public charter school and undergraduate service-learning programs to raise awareness about STEM opportunities for English language learners. NON-TECHNICAL ABSTRACTStem cells offer the remarkable ability to develop into many different cell types and tissues. Thus, they not only have the potential to cure damaged or diseased organs, but also provide a platform to study the fundamental chemistry of life. Researchers have long studied stem cell biology in vitro with a focus on the impact of biochemical reactions and mechanical cues on stem cell fate. These scientists culture stem cells on various types of materials which serve as bioscaffolds, engineering the materials to leverage the mechanical crosstalk between the stem cell and the scaffold to control their fate. There are few investigations that leverage electrical and thermal cues which vary in space and time to control stem cell fate. The recent discovery of graphene (a single layer of carbon atoms arranged in a 2-dimensional hexagonal crystal structure) has opened up new possibilities for bioscaffolds to control such electrical and thermal interactions with stem cells. Therefore, the goal of this NSF CAREER award is to integrate graphene with stem cell biology to uncover the fundamental interactions of these two systems. Intellectual Merit The proposed work will have an impact on stem cell biology and atomically thin materials research by providing new fundamental insights into the role of electrical and thermal cues in controlling stem cell fate. Broader Impacts: Achieving control over stem cell fate could revolutionize tissue engineering and regenerative medicine, reducing dependence on organ donors to treat patient end-stage organ failure. Scientific outreach activities will help establish a pipeline of English language learners from a local dual-language immersion program into Boise State University's STEM programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术摘要:美国国家科学基金会职业奖的目的是通过使用新方法研究石墨烯等原子薄材料在控制干细胞命运方面的新兴作用,丰富对干细胞生物学基本原理的科学理解。为了实现这一目标,首席研究员将把石墨烯和石墨烯衍生物的功能模式整合到生物支架中,以控制和测量人类间充质干细胞(hMSC)生长和分化的基本生物物理信号。石墨烯生物支架的电连接将用于调节温度和电场,同时还可以主动监测细胞-石墨烯界面在生长和分化过程中的电化学交换。为了阐明石墨烯的结构-性能-加工与hMSC分化的相关性,将比较在SiC衬底上外延石墨烯上生长hMSC、在铜箔上化学气相沉积生长多晶石墨烯薄膜以及在化学剥落的石墨烯纳米片上印刷的石墨烯薄膜的遗传谱。施加在石墨烯薄膜上的电偏压将用于监测跨膜电压对hMSC命运的影响,以及电信号对细胞外基质产生和工程肌肉骨骼组织机械性能的影响。智力优势:获得的基础知识将使电活性生物支架的一套完整的设计规则能够耦合或解耦负责干细胞生长和分化的生物物理线索。通过这些实验产生的数据将公开提供,以进一步推进生物分子过程的计算机研究,并随后整合到虚拟生理人体模型中。更广泛的影响:通过将石墨烯整合到组织工程周期中,潜在的转变结果可能包括干细胞培养的新仪器,新的多功能生物支架材料,以及组织工程和再生医学的新研究途径。综合教育推广活动利用当地双语浸入式公立特许学校和本科服务学习计划,提高英语学习者对STEM机会的认识。干细胞提供了发展成许多不同细胞类型和组织的非凡能力。因此,它们不仅具有治愈受损或患病器官的潜力,而且还为研究生命的基本化学提供了一个平台。长期以来,研究人员一直在体外研究干细胞生物学,重点关注生化反应和机械因素对干细胞命运的影响。这些科学家在作为生物支架的各种材料上培养干细胞,设计这些材料来利用干细胞和支架之间的机械串扰来控制它们的命运。很少有研究利用在空间和时间上变化的电和热信号来控制干细胞的命运。最近发现的石墨烯(单层碳原子排列成二维六边形晶体结构)为生物支架控制与干细胞的电和热相互作用开辟了新的可能性。因此,NSF CAREER奖的目标是将石墨烯与干细胞生物学结合起来,揭示这两个系统的基本相互作用。这项工作将对干细胞生物学和原子薄材料的研究产生影响,为控制干细胞命运的电和热线索的作用提供新的基本见解。更广泛的影响:实现对干细胞命运的控制可以彻底改变组织工程和再生医学,减少对器官供体的依赖来治疗终末期器官衰竭患者。科学推广活动将有助于建立一个管道,让英语学习者从当地的双语浸入式课程进入博伊西州立大学的STEM课程。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prechondrogenic ATDC5 Cell Attachment and Differentiation on Graphene Foam; Modulation by Surface Functionalization with Fibronectin
- DOI:10.1021/acsami.9b14670
- 发表时间:2019-11-13
- 期刊:
- 影响因子:9.5
- 作者:Frahs, Stephanie M.;Reeck, Jonathon C.;Oxford, Julia Thom
- 通讯作者:Oxford, Julia Thom
Differential Gene Expression in C2C12 Cells due to Scaffold Structure-Property-Processing-Performance Correlations
由于支架结构-性质-加工-性能相关性导致 C2C12 细胞中基因表达差异
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Karriem, L. Frahs
- 通讯作者:Karriem, L. Frahs
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Estrada其他文献
Detection of Methylation on dsDNA at Single-Molecule Level using Solid-State Nanopores
- DOI:
10.1016/j.bpj.2017.11.1205 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Julian Bello;younghoon Kim;Shouvik Banerjee;Kirby Smithe;David Estrada;SuA Myong;Ann Nardulli;Eric Pop;Rashid Bashir;Jiwook Shim - 通讯作者:
Jiwook Shim
High Field Breakdown Characteristics of Carbon Nanotube Thin High Field Breakdown Characteristics of Carbon Nanotube Thin Film Transistors Film Transistors
碳纳米管薄膜的高场击穿特性 碳纳米管薄膜晶体管的高场击穿特性 薄膜晶体管
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Man Prakash;G. W. Woodruff;A. Behnam;Feifei Lian;David Estrada;Eric Pop;Satish Kumar;G. W. Woodruff - 通讯作者:
G. W. Woodruff
Flexible Thermoelectrics: High‐Performance Flexible Bismuth Telluride Thin Film from Solution Processed Colloidal Nanoplates (Adv. Mater. Technol. 11/2020)
柔性热电材料:由溶液处理的胶体纳米板制成的高性能柔性碲化铋薄膜(Adv. Mater. Technol. 11/2020)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
C. Hollar;Zhaoyang Lin;M. Kongara;Tony Varghese;C. Karthik;Jesse Schimpf;J. Eixenberger;P. Davis;Yaqiao Wu;X. Duan;Yanliang Zhang;David Estrada - 通讯作者:
David Estrada
Utilization of Complementary and Integrative Health Care by People With Spinal Cord Injury in the Spinal Cord Injury Model Systems: A Descriptive Study
- DOI:
10.1016/j.apmr.2021.04.023 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:
- 作者:
Jennifer Coker;Jeffrey Berliner;Amanda Botticello;Thomas N. Bryce;Susan Charlifue;David Chen;David Estrada;Kimberley R. Monden;Heather Taylor;Ross Zafonte;Jeanne M Zanca - 通讯作者:
Jeanne M Zanca
Expanding Opportunities: Promoting Accessible Higher Education for Non-Traditional Learners
- DOI:
10.1007/s11837-023-06032-w - 发表时间:
2023-07-31 - 期刊:
- 影响因子:2.300
- 作者:
David Estrada;Kiyo T. Fujimoto - 通讯作者:
Kiyo T. Fujimoto
David Estrada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Estrada', 18)}}的其他基金
FuSe-TG: A Co-Design Model for Advanced Manufacturing and Workforce Development to Enhance Future Semiconductor Technologies
FuSe-TG:先进制造和劳动力发展的协同设计模型,以增强未来的半导体技术
- 批准号:
2235294 - 财政年份:2023
- 资助金额:
$ 55.08万 - 项目类别:
Standard Grant
REU Site: Advanced Manufacturing for a Sustainable Energy Future
REU 网站:先进制造打造可持续能源未来
- 批准号:
2051090 - 财政年份:2021
- 资助金额:
$ 55.08万 - 项目类别:
Standard Grant
IUCRC Phase II Boise State University: Center for Atomically Thin Multifunctional Coatings (ATOMIC)
IUCRC 第二阶段博伊西州立大学:原子薄多功能涂层中心 (ATOMIC)
- 批准号:
2113873 - 财政年份:2021
- 资助金额:
$ 55.08万 - 项目类别:
Continuing Grant
相似国自然基金
基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
MoS2-graphene二维亚纳米通道膜构筑及溶剂传质与筛分机制研究
- 批准号:22378132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
- 批准号:62375044
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
转角In2Se3/Graphene异质结的界面调控及电子性质研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
g-C3N4/Graphene二维异质结光电阴极保护材料的构筑及应变调控光电效率研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
ZnO/Graphene复合量子点的表面特性调控、吸附作用及抗菌性能增强机制
- 批准号:51802185
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
三维多孔KCu7S4@C/graphene复合材料的可控制备及其储能性质的研究
- 批准号:21805247
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
超细晶graphene/Cu材料累积叠轧过程中组织演变机制和强化机制
- 批准号:51701174
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
三维多孔SnS@C/graphene复合材料可控制备与储钠性能研究
- 批准号:51604122
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New low-cost graphene production to revolutionise engineering applications
新型低成本石墨烯生产将彻底改变工程应用
- 批准号:
2911021 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Studentship
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Standard Grant
New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
- 批准号:
2403736 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Standard Grant
STTR Phase I: High-Sensitivity Flexible Quantum Dots/Graphene X-Ray Detectors and Imaging Systems
STTR 第一阶段:高灵敏度柔性量子点/石墨烯 X 射线探测器和成像系统
- 批准号:
2322053 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Standard Grant
Super selective hydrogen permeation through mixed proton and electron conducting asymmetric graphene based membrane
通过混合质子和电子传导不对称石墨烯基膜的超选择性氢渗透
- 批准号:
24K17588 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Revolutionizing Spacecraft Thermal Control with Dynamic Graphene Radiators: SmartSat
利用动态石墨烯散热器彻底改变航天器热控制:SmartSat
- 批准号:
10098641 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
EU-Funded
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Research Grant
CAREER: Manufacturing of Continuous Network Graphene-Copper Composites for Ultrahigh Electrical Conductivity
职业:制造具有超高导电性的连续网络石墨烯-铜复合材料
- 批准号:
2338609 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Standard Grant
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
- 批准号:
24K18002 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design of graphene for tailored functionalities: a novel mathematical approach
定制功能的石墨烯设计:一种新颖的数学方法
- 批准号:
24K06797 - 财政年份:2024
- 资助金额:
$ 55.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




