Minimal Surfaces and Geometric Flows
最小曲面和几何流
基本信息
- 批准号:2031696
- 负责人:
- 金额:$ 4.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the participation of U.S.-based researchers in the program "Minimal surfaces and geometric flows,'' co-organized by the principal investigator, to be held January 18-29, 2021 at the Matrix Institute, located on the University of Melbourne's Creswick campus, Victoria, Australia. The first week of the event offers two minicourses in the style of a winter school aimed at junior researchers. The second week is focused on research seminars in the style of a conference, with junior and senior researchers presenting their research. An emphasis is put on the interaction between experts in the area and training opportunities for young researchers.This program aims to bring together mathematicians from different countries that are currently working on classical and nonlocal geometric problems, with special interest in the study of classification and regularity results for classical and nonlocal minimal surfaces, problems related to spectral analysis of elliptic problems of geometric interest, maximum principles, oscillation theorems, and existence and qualitative properties of solutions to classical and nonlocal geometric flows. The first week consists of minicourses in which junior participants receive a state-of-the-art introduction to this emerging field, with an emphasis on interaction and discussion. During the second week, senior and junior participants will present the latest developments in these areas of research.https://www.matrix-inst.org.au/events/pminimal-surfaces-and-geometric-flows-interaction-between-the-local-and-the-nonlocal-worlds/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持美国的参与-由首席研究员共同组织的“最小表面和几何流”项目的研究人员将于2021年1月18日至29日在位于澳大利亚维多利亚墨尔本大学克雷斯威克校区的矩阵研究所举行。活动的第一周提供了两个小型课程,以冬季学校的风格,针对初级研究人员。第二周的重点是会议风格的研究研讨会,初级和高级研究人员介绍他们的研究。重点放在该领域专家之间的互动和年轻研究人员的培训机会。该计划旨在汇集来自不同国家的数学家,他们目前正在研究经典和非局部几何问题,特别关注经典和非局部极小曲面的分类和正则性结果的研究,与几何兴趣的椭圆问题的谱分析相关的问题,最大值原理,振荡定理,古典和非局部几何流解的存在性和定性性质。第一周包括小型课程,初级参与者将获得对这一新兴领域的最新介绍,重点是互动和讨论。在第二周,高级和初级参与者将介绍research.https://www.matrix-inst.org.au/events/pminimal-surfaces-and-geometric-flows-interaction-between-the-local-and-the-nonlocal-worlds/This奖这些领域的最新发展,反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Armin Schikorra其他文献
$$\varepsilon $$ -regularity for systems involving non-local, antisymmetric operators
- DOI:
10.1007/s00526-015-0913-3 - 发表时间:
2015-08-20 - 期刊:
- 影响因子:2.000
- 作者:
Armin Schikorra - 通讯作者:
Armin Schikorra
On energy-critical half-wave maps into $${\mathbb {S}}^2$$
- DOI:
10.1007/s00222-018-0785-1 - 发表时间:
2018-01-18 - 期刊:
- 影响因子:3.600
- 作者:
Enno Lenzmann;Armin Schikorra - 通讯作者:
Armin Schikorra
Armin Schikorra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Armin Schikorra', 18)}}的其他基金
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 4.9万 - 项目类别:
Continuing Grant
Trends in Nonlocal Analysis and Geometry
非局部分析和几何的趋势
- 批准号:
1931340 - 财政年份:2019
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Biology, Analysis, Geometry, Energies, Links: A Program on Low-dimensional Topology, Geometry, and Applications
生物学、分析、几何、能量、链接:低维拓扑、几何和应用程序
- 批准号:
1931930 - 财政年份:2019
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
相似海外基金
Minimal Surfaces in Geometric Variational Problems
几何变分问题中的最小曲面
- 批准号:
2147521 - 财政年份:2021
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Minimal Surfaces in Geometric Variational Problems
几何变分问题中的最小曲面
- 批准号:
2050120 - 财政年份:2020
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Minimal Surfaces in Geometric Variational Problems
几何变分问题中的最小曲面
- 批准号:
1905165 - 财政年份:2019
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Geometric measure theory and minimal surfaces
几何测量理论和最小曲面
- 批准号:
1936911 - 财政年份:2017
- 资助金额:
$ 4.9万 - 项目类别:
Studentship
Minimal and constant mean curvature surfaces: their geometric and topological properties.
最小和恒定平均曲率曲面:它们的几何和拓扑特性。
- 批准号:
EP/M024512/1 - 财政年份:2015
- 资助金额:
$ 4.9万 - 项目类别:
Research Grant
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
- 批准号:
386420-2010 - 财政年份:2014
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
- 批准号:
386420-2010 - 财政年份:2013
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
- 批准号:
396098-2010 - 财政年份:2012
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
- 批准号:
386420-2010 - 财政年份:2012
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Individual
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
- 批准号:
396098-2010 - 财政年份:2011
- 资助金额:
$ 4.9万 - 项目类别:
Discovery Grants Program - Accelerator Supplements