CAREER: Emergence of Functional Organization in the Adaptive Immune System

职业:适应性免疫系统中功能组织的出现

基本信息

  • 批准号:
    2045054
  • 负责人:
  • 金额:
    $ 90万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

It takes decades for humans to reproduce, but our pathogens can reproduce in less than a day. How can we coexist with pathogens that can evolve more than 10,000 times faster than us? The answer lies in our adaptive immune system, which is a self-organized system of highly diverse immune cells that develop during the lifetime of an organism. The adaptive immune system incorporates all aspects of life, from molecular signaling to cellular evolution. The result is an information processing molecular organization with many interacting components, which can reliably sense and adaptively respond to diverse and evolving pathogens. The vast differences in immune repertoires between individuals suggest the existence of many molecular solutions to statistically similar pathogenic environments. The goal of this project is to use machine learning to derive a map from the diverse and high-dimensional space of receptor repertoire sequences to a lower dimensional space of immune functions that relates to biophysics of immune recognition. This effective functional representation of immune repertoires would allow construction of predictive models for immune responses to pathogens, and will shed light on functional organization of immune repertoires. To bridge the gap between physics and biology, the PI will introduce pre-college and undergraduate students to biophysics research, with particular emphasis on women and underrepresented minorities. The PI will create new teaching modules to introduce both the physics and the life-science undergraduate and graduate students to current progress in physics of living systems. In addition the PI will commit significant resources to mentor undergraduate and high school students during summers and the academic year to pursue biophysics research. The PI will invite biophysics researchers to the department’s “Frontiers of Physics Public Lecture Series”, to foster an appreciation and support among the community for the exciting developments in this field.The adaptive immune system develops during the lifetime of an organism and consists of highly diverse B-and T-cells, whose unique surface receptors are generated through genomic rearrangement, mutation, and selection. This diverse repertoire of receptors can mount specific responses against a multitude of evolving pathogens and keep a memory of past infections for future encounters. Pathogens in return, evolve to escape the immune challenge, forming a rapid co-evolutionary arms race during the life-time of an organism. Over the past decade, high throughput immune repertoire sequencing has been instrumental in characterizing the diversity of immune receptor sequences. However, we still lack an understating of how receptor sequence diversity translates to immune function. In this project, the PI will combine theoretical modeling with inference from molecular data to uncover the biophysical and evolutionary basis of the functional organization and encoding of pathogenic information in the adaptive immune system. The life-cycle of immune cells is defined by a continuum of selection stages leading to their functional specialization. The PI will develop biophysical inference techniques to leverage receptor repertoire data of distinct immune cell-types and use machine learning to derive sequence-determinants of immune function. In addition the PI will develop predictive fitness models to characterize how the short-and long-term dynamics of immune repertoires relate to functional responses to pathogens. By building upon recent advances in machine learning, the PI will infer a latent representation (i.e., a shape space) for immune receptors that reflects the relevant biophysics of immune recognition and function. The inferred immune shape space will allow to ask fundamental questions regarding the biophysical determinants of antigenic interactions, and self/non-self discrimination. Lastly, a theoretical framework to study how the co-evolutionary history of hosts and pathogens has shaped immune strategies, both at the individual-and the population-level will be developed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类需要几十年才能繁殖,但我们的病原体可以在不到一天的时间内繁殖。我们如何与进化速度比我们快一万倍的病原体共存?答案在于我们的适应性免疫系统,这是一个高度多样化的免疫细胞的自组织系统,在生物体的一生中发展。适应性免疫系统包含了生命的各个方面,从分子信号到细胞进化。其结果是一个具有许多相互作用的成分的信息处理分子组织,它可以可靠地感知和适应性地响应不同和不断变化的病原体。个体之间免疫系统的巨大差异表明,对于统计学上相似的致病环境,存在许多分子解决方案。该项目的目标是使用机器学习从受体库序列的多样性和高维空间导出与免疫识别生物物理学相关的免疫功能的低维空间的映射。这种有效的免疫库的功能表示将允许构建对病原体的免疫应答的预测模型,并将揭示免疫库的功能组织。为了弥合物理学和生物学之间的差距,PI将向大学预科生和本科生介绍生物物理学研究,特别强调妇女和代表性不足的少数民族。PI将创建新的教学模块,向物理学和生命科学本科生和研究生介绍生命系统物理学的当前进展。此外,PI将在暑期和学年期间投入大量资源指导本科生和高中生进行生物物理学研究。本系将邀请生物物理学研究人员参加本系的“物理学前沿公开讲座系列”,以促进社会各界对这一领域令人兴奋的发展的赞赏和支持。适应性免疫系统在生物体的一生中发展,由高度多样化的B细胞和T细胞组成,其独特的表面受体通过基因组重排,突变和选择产生。这种多样的受体库可以对多种不断进化的病原体产生特异性反应,并为未来的遭遇保持对过去感染的记忆。作为回报,病原体进化以逃避免疫挑战,在生物体的一生中形成快速的共同进化军备竞赛。在过去的十年中,高通量免疫库测序已经在表征免疫受体序列的多样性方面发挥了作用。然而,我们仍然缺乏对受体序列多样性如何转化为免疫功能的理解。在这个项目中,PI将联合收割机理论建模与分子数据推理相结合,以揭示适应性免疫系统中致病信息的功能组织和编码的生物物理和进化基础。免疫细胞的生命周期由导致其功能特化的连续选择阶段定义。PI将开发生物物理推断技术,以利用不同免疫细胞类型的受体库数据,并使用机器学习来推导免疫功能的序列决定因素。此外,PI将开发预测适应度模型,以表征免疫库的短期和长期动态与对病原体的功能反应的关系。通过建立在机器学习的最新进展基础上,PI将推断出潜在的表示(即,形状空间),其反映免疫识别和功能的相关生物物理学。推断的免疫形状空间将允许询问关于抗原相互作用的生物物理决定簇和自我/非自我辨别的基本问题。最后,一个理论框架,研究如何共同进化的历史,主机和病原体形成免疫战略,无论是在个人和人口的水平将developed.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mutual information maximization for amortized likelihood inference from sampled trajectories: MINIMALIST
从采样轨迹进行摊销似然推断的互信息最大化:极简主义
  • DOI:
    10.1103/physreve.105.055309
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Isacchini, Giulio;Spisak, Natanael;Nourmohammad, Armita;Mora, Thierry;Walczak, Aleksandra M.
  • 通讯作者:
    Walczak, Aleksandra M.
Learning and Organization of Memory for Evolving Patterns
进化模式的记忆学习和组织
  • DOI:
    10.1103/physrevx.12.021063
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Schnaack, Oskar H.;Peliti, Luca;Nourmohammad, Armita
  • 通讯作者:
    Nourmohammad, Armita
T cell immune responses deciphered
T细胞免疫反应被破译
  • DOI:
    10.1126/science.abq1679
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Nourmohammad, Armita
  • 通讯作者:
    Nourmohammad, Armita
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Armita Nourmohammad其他文献

MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood Inference from Sampled Trajectories
极简主义:根据采样轨迹进行摊余似然推断的互信息最大化
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    G. Isacchini;Natanael Spisak;Armita Nourmohammad;T. Mora;A. Walczak
  • 通讯作者:
    A. Walczak
On generative models of T-cell receptor sequences
T细胞受体序列的生成模型
  • DOI:
    10.1101/857722
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Isacchini;Zachary M. Sethna;Yuval Elhanati;Armita Nourmohammad;A. Walczak;T. Mora
  • 通讯作者:
    T. Mora
Probabilities of HIV-1 bNAb development in healthy and chronically infected individuals
健康和慢性感染者产生 HIV-1 bNAb 的概率
  • DOI:
    10.1101/2022.07.11.499584
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christoph Kreer;Cosimo Lupo;M. Ercanoglu;L. Gieselmann;N. Spisak;Jan Grossbach;M. Schlotz;P. Schommers;H. Gruell;L. Dold;Andreas M Beyer;Armita Nourmohammad;T. Mora;A. Walczak;F. Klein
  • 通讯作者:
    F. Klein
H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing
H-Packer:用于蛋白质侧链包装的全息旋转等变卷积神经网络
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gian Marco Visani;William Galvin;Michael N. Pun;Armita Nourmohammad
  • 通讯作者:
    Armita Nourmohammad
Clonal competition in B-cell repertoires during chronic HIV-1 infection
慢性 HIV-1 感染期间 B 细胞库的克隆竞争
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Armita Nourmohammad;J. Otwinowski;M. Łuksza;T. Mora;A. Walczak
  • 通讯作者:
    A. Walczak

Armita Nourmohammad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Exposing Verifiable Consequences of the Emergence of Mass
  • 批准号:
    12135007
  • 批准年份:
    2021
  • 资助金额:
    313 万元
  • 项目类别:
    重点项目
拓扑动力系统中熵和emergence理论的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Emergence of theory of mind in young children, explored with functional MRI and Virtual Reality (VR)
通过功能性 MRI 和虚拟现实 (VR) 探索幼儿心智理论的出现
  • 批准号:
    2886793
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Studentship
Using Functional Neuroimaging and Smartphone Digital Phenotyping to Understand the Emergence of Internalizing Illness
使用功能神经影像和智能手机数字表型来了解内化疾病的出现
  • 批准号:
    10749114
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2022: Determining functional correlates to the emergence and maintenance of antibiotic resistance genes in host-associated microbiomes
2022 财年 NSF 生物学博士后奖学金:确定与宿主相关微生物组中抗生素抗性基因的出现和维持的功能相关性
  • 批准号:
    2209002
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Fellowship Award
Emergence of hydrodynamics in many-body systems: new rigorous avenues from functional analysis
多体系统中流体动力学的出现:功能分析的新严格途径
  • 批准号:
    EP/W000458/1
  • 财政年份:
    2021
  • 资助金额:
    $ 90万
  • 项目类别:
    Research Grant
Mapping the Emergence and Functional Impact of Novel SARS-CoV-2 Variants
绘制新型 SARS-CoV-2 变异体的出现和功能影响图
  • 批准号:
    449020
  • 财政年份:
    2021
  • 资助金额:
    $ 90万
  • 项目类别:
    Operating Grants
Emergence of functional dynamics in heterogeneously-connected dynamical elements
异构连接动态元素中功能动力学的出现
  • 批准号:
    18K03471
  • 财政年份:
    2018
  • 资助金额:
    $ 90万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Knowledge of the Unknown. On the Emergence and Functional Logic of the “Dark Figure” in the 19th Century
未知的知识。
  • 批准号:
    415009625
  • 财政年份:
    2018
  • 资助金额:
    $ 90万
  • 项目类别:
    Research Grants
Emergence of Functional Network Dynamics from Single Cell Properties
从单细胞特性中出现功能网络动力学
  • 批准号:
    9381286
  • 财政年份:
    2017
  • 资助金额:
    $ 90万
  • 项目类别:
Emergence of Functional Network Dynamics from Single Cell Properties
从单细胞特性中出现功能网络动力学
  • 批准号:
    10245166
  • 财政年份:
    2017
  • 资助金额:
    $ 90万
  • 项目类别:
Emergence of functional polarity in a tubular epithelium: a mechanistic study
管状上皮功能极性的出现:机制研究
  • 批准号:
    BB/N001281/1
  • 财政年份:
    2016
  • 资助金额:
    $ 90万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了