Emergence of hydrodynamics in many-body systems: new rigorous avenues from functional analysis

多体系统中流体动力学的出现:功能分析的新严格途径

基本信息

  • 批准号:
    EP/W000458/1
  • 负责人:
  • 金额:
    $ 10.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the deepest ideas of modern science is that of emergence. In a system composed of a very large number of constituents, such as atoms or molecules, even with simple laws of interaction, it can be very difficult to describe what happens at large scales, where most physically relevant observation occur. the passage from short-scale, microscopic motion to large-scale, emergent collective behaviours is at the heart of some of the most important questions in modern theoretical and mathematical physics.Take the example of travelling surface-water waves. A local disturbance on a steady water surface - say a finger touching it - produces a complicated rearrangement of water molecules at microscopic distances. But the strongest effect on any local probe that is far enough away - say a nearby floating leaf - occurs when the surface wave, propagating out of the local disturbance, hits it. The surface wave is an emergent behaviour, with its own, new dynamics. In this case, it is obtained by linear response from the Navier-Stokes equations. Similarly, in a large class of many-body systems, strong correlations are expected to occur along trajectories associated with the propagation of ballistic, or slowly decaying modes, such as surface water waves or sound waves, and hydrodynamics is their emergent theory.Despite the simplicity of the above example, a full mathematical understanding of how hydrodynamics emerge from Newton's basic laws of motion, or their refinements in quantum mechanics and relativity, is still missing. Probing, from first principles, the behaviours seen at long times and large distances, and involving a large number of particles, is a monumental task of deep significance. Except for very specific models, there is currently no rigorous proof of hydrodynamic equations in strongly interacting systems whose dynamics is Hamiltonian or more generally reversible and deterministic. Given the ubiquity and apparent universal applicability of the fundamental principles and ideas of hydrodynamics, this is one of the most important challenges of mathematical physics.This project aims at exploring new avenues in this problem, which offer the hope of a rigorous and general treatment. The main hypothesis is that the mathematics of functional analysis, which is fundamentally a theory about infinitly large objects, offers the right framework for emergence in the statistical mechanics description of many-body systems. Instead of attempting to describe specific models, via this universal language one divides the task in two: first, one extracts essential properties as a set of axioms and attempts to derive hydrodynamics from them; second, one shows that such properties hold in families of models.Recently, in the paper [arXiv:2011.00611], the principal investigator has succeeded in showing, in this way, a number of fundamental aspects of the large-time motion of many-body quantum spin systems in one dimension, including the projection onto hydrodynamic modes and the emergence of the linearised Euler equation in a general form.This project aims at developing further this theory, with the goal not only of establishing at some fundamental results in general systems systems of arbitrary dimensionality, but also of exploring the possibilities offered by this new viewpoint for rigorous proofs of hydrodynamics.
现代科学最深奥的思想之一就是涌现。在一个由大量组成成分(如原子或分子)组成的系统中,即使有简单的相互作用定律,也很难描述在大尺度上发生的事情,而大尺度是大多数物理相关观察发生的地方。从短尺度、微观运动到大规模、涌现的集体行为的过渡是现代理论和数学物理中一些最重要问题的核心。以传播的表面水波为例。在稳定的水面上,一个局部的扰动——比如一根手指碰到水面——会在微观距离上产生复杂的水分子重排。但是,对任何距离足够远的局部探测器——比如附近的一片漂浮的叶子——最强烈的影响发生在表面波从局部扰动传播到它身上的时候。表面波是一种突发行为,有它自己的新动态。在这种情况下,它是由Navier-Stokes方程的线性响应得到的。类似地,在一大类多体系统中,强相关性预计会沿着与弹道传播或缓慢衰减模式(如表面水波或声波)相关的轨迹发生,而流体力学是它们的新兴理论。尽管上面的例子很简单,但对于流体力学是如何从牛顿的基本运动定律中产生的,或者它们在量子力学和相对论中的改进,仍然缺乏一个完整的数学理解。从第一性原理出发,探索在长时间、远距离、涉及大量粒子的行为,是一项具有深远意义的艰巨任务。除了非常特殊的模型外,目前还没有严格的证据证明在动力学是哈密顿的或更普遍的可逆和确定性的强相互作用系统中的流体动力学方程。鉴于流体力学的基本原理和思想的普遍性和明显的普遍适用性,这是数学物理最重要的挑战之一。该项目旨在探索解决这一问题的新途径,为严谨和普遍的治疗提供了希望。主要的假设是,泛函分析的数学,基本上是一种关于无限大物体的理论,为多体系统的统计力学描述提供了正确的框架。不是试图描述具体的模型,而是通过这种通用语言将任务分为两部分:首先,提取基本属性作为一组公理,并试图从中推导流体力学;第二,一个证明了这些属性在模型族中是成立的。最近,在论文[arXiv:2011.00611]中,首席研究员成功地以这种方式展示了一维多体量子自旋系统大时间运动的一些基本方面,包括对流体动力模式的投影和线性化欧拉方程的一般形式的出现。本项目旨在进一步发展这一理论,其目标不仅是在任意维的一般系统中建立一些基本结果,而且还探索这一新观点为流体力学的严格证明提供的可能性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrodynamic gauge fixing and higher order hydrodynamic expansion
Diffusion and Superdiffusion from Hydrodynamic Projections
流体动力学投影的扩散和超扩散
Ballistic macroscopic fluctuation theory
  • DOI:
    10.21468/scipostphys.15.4.136
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    B. Doyon;G. Perfetto;T. Sasamoto;T. Yoshimura
  • 通讯作者:
    B. Doyon;G. Perfetto;T. Sasamoto;T. Yoshimura
Long-Time Dynamics in Quantum Spin Lattices: Ergodicity and Hydrodynamic Projections at All Frequencies and Wavelengths
  • DOI:
    10.1007/s00023-023-01304-2
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitrios Ampelogiannis;B. Doyon
  • 通讯作者:
    Dimitrios Ampelogiannis;B. Doyon
The hydrodynamic theory of dynamical correlation functions in the XX chain
XX链中动态相关函数的流体动力学理论
  • DOI:
    10.1088/1742-5468/ac6667
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Del Vecchio Del Vecchio G
  • 通讯作者:
    Del Vecchio Del Vecchio G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Doyon其他文献

一般化流体力学(GHD)で記述される系の大偏差
广义流体动力学 (GHD) 描述的系统的大偏差
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    笹本 智弘;Benjamin Doyon;吉村賢人
  • 通讯作者:
    吉村賢人
Bi-partite entanglement entropy in integrable models with backscattering
反向散射可积模型中的二分纠缠熵
Skew RSK, affine crystal and KPZ
偏斜 RSK、仿射晶体和 KPZ
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    笹本 智弘;Benjamin Doyon;吉村賢人;笹本 智弘
  • 通讯作者:
    笹本 智弘
Nonlinear fluctuating hydrodynamics for stochastic interacting particle systems
随机相互作用粒子系统的非线性脉动流体动力学
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    笹本 智弘;Benjamin Doyon;吉村賢人;笹本 智弘;Tomohiro Sasamoto
  • 通讯作者:
    Tomohiro Sasamoto
A new quadrature for the generalized hydrodynamics equation and absence of shocks in the Lieb-Liniger model
广义流体动力学方程的新求积和 Lieb-Liniger 模型中无冲击的情况
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Friedrich Hubner;Benjamin Doyon
  • 通讯作者:
    Benjamin Doyon

Benjamin Doyon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Doyon', 18)}}的其他基金

Fluctuations and correlations at large scales from emergent hydrodynamics: integrable systems and beyond
新兴流体动力学中的大规模波动和相关性:可积系统及其他
  • 批准号:
    EP/W010194/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Research Grant
Entanglement Measures, Twist Fields, and Partition Functions in Quantum Field Theory
量子场论中的纠缠测度、扭曲场和配分函数
  • 批准号:
    EP/P006132/1
  • 财政年份:
    2016
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Research Grant
Workshop on Entanglement Entropy in Many Body Quantum Systems
多体量子系统中的纠缠熵研讨会
  • 批准号:
    EP/L027399/1
  • 财政年份:
    2014
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Research Grant
From conformal loop ensembles to conformal field theory
从共形环系综到共形场论
  • 批准号:
    EP/H051619/1
  • 财政年份:
    2010
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Research Grant

相似国自然基金

基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
  • 批准号:
    51078108
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hydrodynamics of quantum fluids
量子流体的流体动力学
  • 批准号:
    DP240101033
  • 财政年份:
    2024
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Discovery Projects
Elucidating Hydrodynamics at Confined Interfaces for Artificial Active Fluidics and Beyond
阐明人工主动流体学及其他领域的受限界面处的流体动力学
  • 批准号:
    MR/X03660X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Fellowship
CAREER: Collective hydrodynamics within viscous interfaces: activity and assembly in membranes and monolayers
职业:粘性界面内的集体流体动力学:膜和单层中的活性和组装
  • 批准号:
    2340415
  • 财政年份:
    2024
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Continuing Grant
The development of new Smoothed Particle Hydrodynamics algorithm for dynamic fracture
用于动态断裂的新平滑粒子流体动力学算法的开发
  • 批准号:
    2894121
  • 财政年份:
    2023
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Studentship
RII Track-4:NSF: Enhanced Multiscale Approaches for Simulations of Multicomponent Fluids with Complex Interfaces using Fluctuating Hydrodynamics
RII Track-4:NSF:使用脉动流体动力学模拟具有复杂界面的多组分流体的增强多尺度方法
  • 批准号:
    2346036
  • 财政年份:
    2023
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Standard Grant
Time-Dependent Hydrodynamics in Uniform Fermi Gases
均匀费米气体中的瞬态流体动力学
  • 批准号:
    2307107
  • 财政年份:
    2023
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Continuing Grant
Clarification of Energy Mechanisms in Supercritical Accretion Flows on to Neutron Stars through Hydrodynamics and Radiative Transfer Simulations
通过流体动力学和辐射传输模拟阐明中子星超临界吸积流的能量机制
  • 批准号:
    22KJ0368
  • 财政年份:
    2023
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: The Evolution of Hydrodynamics, Mechanics, & Prey Capture in the Feeding of Misfit Fish
NSF-BSF:流体动力学、力学、
  • 批准号:
    2326484
  • 财政年份:
    2023
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Continuing Grant
Advanced hydrodynamics for next generation of offshore infrastructure
下一代海上基础设施的先进流体动力学
  • 批准号:
    FT230100109
  • 财政年份:
    2023
  • 资助金额:
    $ 10.04万
  • 项目类别:
    ARC Future Fellowships
The interaction of waves with seaweed farms: wave attenuation and intra-farm hydrodynamics
波浪与海藻养殖场的相互作用:波浪衰减和养殖场内的流体动力学
  • 批准号:
    2888992
  • 财政年份:
    2023
  • 资助金额:
    $ 10.04万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了