CAREER: Quantifying Multi-Scale Climate-Smart-Agriculture Management for Triple Wins in Food production, Climate Mitigation, and Environmental Sustainability

职业:量化多尺度气候智能农业管理,实现粮食生产、气候减缓和环境可持续性三赢

基本信息

  • 批准号:
    2045235
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The Mississippi River has the third-largest drainage basin and represents one of the most productive agricultural regions in the world, yielding 80% of US total corn and soybean production and 92% of the nation’s agricultural exports. Large-scale industrial agriculture has led to significant socio-economic gains, but at environmental costs (soil erosion, nutrient pollution, and aquatic acidification) in this region. Climate-smart agriculture (CSA) management practices have been proposed as solutions to these costs, as they not only increase crop yield, but also reduce greenhouse gas emissions, and sustain soil and water quality. However, the effectiveness of CSA practices varies under diverse climate and land use conditions and involves tightly coupled carbon, water, and nutrient cycles. These interactions have not been well studied, and this knowledge gap has hindered understanding and efficient application of CSA practices to achieve the benefits of enhancing food production, climate mitigation, and environmental sustainability. The overall goal of this project is to develop an integrated ecosystem monitoring, modeling, and machine learning framework (EcoM3) that incorporates field observations, satellite remote sensing data, process-based modeling, and a deep-learning approach to systematically investigate specific effects of CSA practice (no-tillage and cover crops) on key agroecosystem indicators (crop yield, soil carbon storage, greenhouse gases, and carbon/nitrogen leaching) at multiple scales. This project will use a long-term field site in Kentucky (continuous observations over 50 years) as one testing site to investigate CSA practice effects from daily to seasonal, annual, decadal scales; examine varied CSA effects at multiple sites with diverse climate and soil conditions across the Mississippi River basin; and predict the potential impacts of CSA practices at the entire river basin scale. Multi-scale data and model results will be integrated into the learning platform of the EcoM3 framework to communicate temporal and spatial CSA effectiveness with diverse stakeholders and policy-makers.This study addresses a challenging question: Will an enhanced systems approach advance our understanding of the interconnected relationships among agroecosystems, climate, and environment systems sufficiently to allow us to simultaneously manage multiple goals (food security, carbon sequestration, and environmental sustainability)? This study represents a systematic method to investigate the comprehensive effects of CSA practices in agricultural systems at both site and regional scales under heterogeneous climate and soil conditions. The proposed EcoM3 framework incorporates CSA management that is targeted to advance conceptual and operational understanding of interactions and feedback loops among climate, land use/management, and ecosystems. Products derived from this study will improve the mechanistic representation of the agroecosystem in Environmental System Models toward a more accurate prediction of biogeochemical cycles and future climate change and will provide viable recommendations for farmers and a scientific basis for making evidence-informed policy about building sustainable and climate-resilient agriculture. Research findings will be communicated with farmers through local extension meetings and the Multi-state Farmer Summit (representatives across regions in Mississippi River basin). Project products will enhance awareness about the importance of CSA management in building climate-resilient agroecosystems and preserving soil and water health. Multi-scale datasets will be made publicly available for research and education.This project is jointly funded by the CBET Environmental Sustainability program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
密西西比河流域是世界上第三大流域,也是世界上最高产的农业区之一,玉米和大豆产量占美国总产量的80%,农产品出口占全国的92%。大规模工业化农业带来了显著的社会经济收益,但在该地区付出了环境代价(土壤侵蚀,营养污染和水酸化)。气候智能型农业管理做法已被提议作为这些成本的解决方案,因为它们不仅增加作物产量,而且减少温室气体排放,并保持土壤和水质。然而,CSA实践的有效性在不同的气候和土地利用条件下会有所不同,并涉及紧密耦合的碳,水和养分循环。这些相互作用尚未得到很好的研究,这种知识差距阻碍了对CSA做法的理解和有效应用,以实现提高粮食生产,减缓气候变化和环境可持续性的好处。该项目的总体目标是开发一个集成的生态系统监测、建模和机器学习框架(EcoM 3),该框架结合了实地观测、卫星遥感数据、基于过程的建模和深度学习方法,以系统地调查CSA实践的具体影响。(免耕和覆盖作物)对关键农业生态系统指标(作物产量、土壤碳储量、温室气体和碳/氮淋失)的影响。该项目将使用一个长期的现场在肯塔基州(连续观察超过50年)作为一个测试站点,以调查CSA实践的影响,从日常到季节,年度,十年尺度;检查不同的CSA影响在多个站点不同的气候和土壤条件在整个密西西比河流域;并预测CSA的做法在整个流域尺度的潜在影响。多尺度数据和模型结果将被整合到EcoM 3框架的学习平台中,以便与不同的利益相关者和政策制定者交流CSA的时间和空间有效性。一种增强的系统方法是否能促进我们对农业生态系统、气候、和环境系统足以让我们同时管理多个目标(粮食安全,碳封存和环境可持续性)?本研究代表了一个系统的方法,调查CSA措施在农业系统中的综合影响,在站点和区域尺度下异质气候和土壤条件。拟议的EcoM 3框架纳入了CSA管理,旨在促进对气候,土地使用/管理和生态系统之间相互作用和反馈回路的概念和操作理解。从这项研究中获得的产品将改善环境系统模型中农业生态系统的机械表示,以更准确地预测生物地球化学循环和未来气候变化,并将为农民提供可行的建议,并为制定有关建设可持续和气候适应性农业的循证政策提供科学依据。研究结果将通过当地推广会议和多州农民峰会(密西西比河流域各地区的代表)与农民进行交流。项目产品将提高对CSA管理在建设具有气候抗御力的农业生态系统和保持土壤和水健康方面的重要性的认识。多尺度数据集将公开用于研究和教育。该项目由CBET环境可持续性计划和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulating no-tillage effects on crop yield and greenhouse gas emissions in Kentucky corn and soybean cropping systems: 1980–2018
  • DOI:
    10.1016/j.agsy.2021.103355
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Yawen Huang;B. Tao;Yanjun Yang;Xiaochen Zhu;Xiaojuan Yang;J. Grove;W. Ren
  • 通讯作者:
    Yawen Huang;B. Tao;Yanjun Yang;Xiaochen Zhu;Xiaojuan Yang;J. Grove;W. Ren
A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments
  • DOI:
    10.1016/j.rser.2022.113042
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Yawen Huang;B. Tao;R. Lal;Klaus E. Lorenz;P. Jacinthe;R. Shrestha;Xiongxiong Bai;M. Singh;L. Lindsey;W. Ren
  • 通讯作者:
    Yawen Huang;B. Tao;R. Lal;Klaus E. Lorenz;P. Jacinthe;R. Shrestha;Xiongxiong Bai;M. Singh;L. Lindsey;W. Ren
Instream sensor results suggest soil–plant processes produce three distinct seasonal patterns of nitrate concentrations in the Ohio River Basin
河内传感器结果表明,土壤植物过程在俄亥俄河流域产生了三种不同的硝酸盐浓度季节性模式
  • DOI:
    10.1111/1752-1688.13107
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gerlitz, Morgan;Fox, Jimmy;Ford, William;Husic, Admin;Mahoney, Tyler;Armstead, Mindy;Hendricks, Susan;Crain, Angela;Backus, Jason;Pollock, Erik
  • 通讯作者:
    Pollock, Erik
Conservation tillage increases corn and soybean water productivity across the Ohio River Basin
  • DOI:
    10.1016/j.agwat.2021.106962
  • 发表时间:
    2021-05-12
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Huang, Yawen;Tao, Bo;Ren, Wei
  • 通讯作者:
    Ren, Wei
Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions
生物炭作为负排放技术:温室气体排放实地研究综合
  • DOI:
    10.1002/jeq2.20475
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Shrestha, Raj K.;Jacinthe, Pierre‐Andre;Lal, Rattan;Lorenz, Klaus;Singh, Maninder P.;Demyan, Scott M.;Ren, Wei;Lindsey, Laura E.
  • 通讯作者:
    Lindsey, Laura E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Ren其他文献

Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates
稀土硫卤化物:范德华层状 Kitaev 自旋液体家族的候选者
  • DOI:
    10.1088/0256-307x/38/4/047502
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianting Ji;Mengjie Sun;Yanzhen Cai;Yimeng Wang;Yingqi Sun;Wei Ren;Zheng Zhang;Feng Jin;Qingming Zhang
  • 通讯作者:
    Qingming Zhang
A gyrB oligo nucleotide microarray for the specific detection of pathogenic Legionella and three Legionella pneumophila subsp.
用于特异性检测致病性军团菌和三种嗜肺军团菌亚种的 gyrB 寡核苷酸微阵列。
Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy
通过超分辨光子力显微镜在溶液中进行亚飞牛顿力传感
  • DOI:
    10.1038/s41566-024-01462-7
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Xuchen Shan;Lei Ding;Dajing Wang;Shihui Wen;Jinlong Shi;Chaohao Chen;Yang Wang;Hongyan Zhu;Zhaocun Huang;Shen S. J. Wang;Xiaolan Zhong;Baolei Liu;Peter John Reece;Wei Ren;Weichang Hao;Xunyu Lu;Jie Lu;Qian Peter Su;Lingqian Chang;Lingdong Sun;Dayong Jin;Lei Jiang;Fan Wang
  • 通讯作者:
    Fan Wang
Effect of the Lüders plateau on the relationship between fracture toughness and constraint for pipeline steels
Lüders 平台对管线钢断裂韧性与约束关系的影响
  • DOI:
    10.1016/j.tafmec.2022.103354
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Yinhui Zhang;Jian Shuai;Zhiyang Lv;Wei Ren;Tieyao Zhang
  • 通讯作者:
    Tieyao Zhang
Association between Pericoronary Fat Attenuation Index Values and Plaque Composition Volume Fraction Measured by Coronary Computed Tomography Angiography.
冠状动脉计算机断层扫描血管造影测量的冠状动脉周围脂肪衰减指数值与斑块成分体积分数之间的关联。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    M. Jing;H. Xi;Yuanyuan Wang;Hao Zhu;Qiu Sun;Yuting Zhang;Wei Ren;Zheng Xu;L. Deng;Bin Zhang;T. Han;Junlin Zhou
  • 通讯作者:
    Junlin Zhou

Wei Ren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Ren', 18)}}的其他基金

CAREER: Quantifying Multi-Scale Climate-Smart-Agriculture Management for Triple Wins in Food production, Climate Mitigation, and Environmental Sustainability
职业:量化多尺度气候智能农业管理,实现粮食生产、气候减缓和环境可持续性三赢
  • 批准号:
    2327138
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    2326940
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Distributed Time-varying Coordination of Uncertain Nonlinear Multi-agent Systems: A Unified Model Reference Scheme
不确定非线性多智能体系统的分布式时变协调:统一模型参考方案
  • 批准号:
    2129949
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Distributed Joint Localization and Tracking for Multi-robot Networks Under Local Sensing and Communication Constraints with Theoretical Guarantees
具有理论保证的局部感知和通信约束下的多机器人网络分布式联合定位与跟踪
  • 批准号:
    2027139
  • 财政年份:
    2020
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Distributed Multi-agent Continuous-time Optimization: Unbalanced Directed Graphs and Constrained Networked Games
分布式多智能体连续时间优化:不平衡有向图和约束网络博弈
  • 批准号:
    1920798
  • 财政年份:
    2019
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    1940696
  • 财政年份:
    2019
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Distributed Continuous-time Optimization for Multi-agent Dynamical Systems under Realistic Challenges
现实挑战下多智能体动态系统的分布式连续时间优化
  • 批准号:
    1611423
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Robust Distributed Average Tracking for Networked Systems
网络系统的鲁棒分布式平均跟踪
  • 批准号:
    1537729
  • 财政年份:
    2015
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Distributed Nonlinear Multi-agent Coordination in Asymmetric Switching Networks: A Sequential Comparison Framework
非对称交换网络中的分布式非线性多智能体协调:顺序比较框架
  • 批准号:
    1307678
  • 财政年份:
    2013
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
CSR-EHCS(CPS), SM: Nature-inspired Control of Networked Cyber-physical Systems
CSR-EHCS(CPS),SM:网络信息物理系统的自然启发控制
  • 批准号:
    1221384
  • 财政年份:
    2011
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant

相似海外基金

MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
  • 批准号:
    NE/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
Intelligent DEPression Tracking (I-DEPT) - A Novel, Longitudinal and Multi-Modal Machine Learning Framework for Quantifying Depression Symptoms
智能抑郁追踪 (I-DEPT) - 一种新颖的、纵向的、多模态的机器学习框架,用于量化抑郁症状
  • 批准号:
    10050419
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Collaborative R&D
CAREER: Quantifying Multi-Scale Climate-Smart-Agriculture Management for Triple Wins in Food production, Climate Mitigation, and Environmental Sustainability
职业:量化多尺度气候智能农业管理,实现粮食生产、气候减缓和环境可持续性三赢
  • 批准号:
    2327138
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Burning in the boreal: Quantifying soil carbon loss from boreal peatland wildfire in western Canada by integrating in-situ data, multi-spectral lidar and modelling to improve operational carbon models
北方燃烧:通过整合现场数据、多光谱激光雷达和建模,量化加拿大西部北方泥炭地野火造成的土壤碳损失,以改进可操作的碳模型
  • 批准号:
    547969-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A multi-tracers approach to quantifying Shield brines mixing and migration from deep to shallow aquifer systems
量化盾构盐水混合和从深层含水层系统到浅层含水层系统迁移的多示踪剂方法
  • 批准号:
    RGPIN-2018-05195
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Grants Program - Individual
Quantifying multi-scale impacts of winter extreme events on the atmosphere-snow-ground interface in the Arctic
量化冬季极端事件对北极大气-雪地界面的多尺度影响
  • 批准号:
    RGPNS-2021-02805
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Quantifying multi-scale impacts of winter extreme events on the atmosphere-snow-ground interface in the Arctic
量化冬季极端事件对北极大气-雪地界面的多尺度影响
  • 批准号:
    RGPIN-2021-02805
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Grants Program - Individual
Quantifying Multi-Scale Architecture of Cardiac Tissues
量化心脏组织的多尺度结构
  • 批准号:
    10217763
  • 财政年份:
    2021
  • 资助金额:
    $ 51万
  • 项目类别:
A multi-tracers approach to quantifying Shield brines mixing and migration from deep to shallow aquifer systems
量化盾构盐水混合和从深层含水层系统到浅层含水层系统迁移的多示踪剂方法
  • 批准号:
    RGPIN-2018-05195
  • 财政年份:
    2021
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Grants Program - Individual
Burning in the boreal: Quantifying soil carbon loss from boreal peatland wildfire in western Canada by integrating in-situ data, multi-spectral lidar and modelling to improve operational carbon models
北方燃烧:通过整合现场数据、多光谱激光雷达和建模,量化加拿大西部北方泥炭地野火造成的土壤碳损失,以改进可操作的碳模型
  • 批准号:
    547969-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 51万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了