Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis

合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)

基本信息

  • 批准号:
    1940696
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The natural-human world is characterized by highly interconnected systems, in which a single discipline is not equipped to identify broader signs of systemic risk and mitigation targets. For example, what risks in agriculture, ecology, energy, finance and hydrology are heightened by climate variability and change? How might risks in, for example, space weather, be connected with energy, water and finance? Recent advances in computing and data science, and the data revolution in each of these domains have now provided a means to address these questions. The investigators jointly establish the PRISM Cooperative Institute for pioneering the integration of large-scale, multi-resolution, dynamic data across different domains to improve the prediction of risks (potentials for extreme outcomes and system failures). The investigators' vision is to develop a trans-domain framework that harnesses big data in the context of domain expertise to discover new critical risk indicators, holistically identify their interconnections, predict future risks and spillover potential, and to measure systemic risk broadly. The investigators will work with stakeholders to ultimately create early warnings and targets for critical risk mitigation and grow preparedness for devastating events worldwide; form wide and unique partnerships to educate the next generation of data scientists through postdoctoral researcher and student exchanges, research retreats, and workshops; and broaden participation through recruiting and training of those under-represented in STEM, including women and underrepresented minority students, and impact on stakeholder communities via methods, tools and datasets enabled by PRISM Data Library web services.The PRISM Cooperative Institute's data-intensive cross-disciplinary research directions include: (i) Critical Risk Indicators (CRIs); The investigators define CRIs as quantifiable information specifically associated with cumulative or acute risk exposure to devastating, ruinous losses resulting from a disastrous (cumulative) activity or a catastrophic event. PRISM aims to identify critical risks and existing indicators in many domains, and develop new CRIs by harnessing the data revolution; (ii) Dynamic Risk Interconnections; The investigators will dynamically model and forecast CRIs and PRISM aims to robustly identify a sparse, interpretable lead-lag risk dependence structure of critical societal risks, using state-of-the-art methods to accommodate CRI complexities such as nonstationary, spatiotemporal, and multi-resolution attributes; (iii) Systemic Risk Indicators (SRIs); PRISM will model trans-domain systemic risk, by forecasting critical risk spillovers and via the creation of SRIs for facilitating stakeholder intervention analysis; (iv) Validation & Stakeholder Engagement; The investigators will deploy the PRISM analytical framework on integrative case studies with distinct risk exposure (acute versus cumulative) and catastrophe characteristics (immediate versus sustained), and will solicit regular input from key stakeholders regarding critical risks and their decision variables, to better inform their operational understanding of policy versus practice.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Mathematical Sciences within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然-人类世界的特点是高度相互关联的系统,其中单一学科无法识别更广泛的系统性风险迹象和缓解目标。例如,气候变率和变化加剧了农业、生态、能源、金融和水文方面的哪些风险?太空天气等风险如何与能源、水和金融联系起来?计算和数据科学的最新进展,以及这些领域的数据革命,现在为解决这些问题提供了一种方法。双方共同建立了PRISM合作研究所,率先将不同领域的大规模、多分辨率、动态数据进行整合,以提高对风险(极端结果和系统故障的可能性)的预测。研究人员的愿景是开发一个跨领域框架,利用领域专业知识背景下的大数据来发现新的关键风险指标,全面识别它们的相互联系,预测未来风险和溢出潜力,并广泛衡量系统风险。调查人员将与利益攸关方合作,最终制定预警和减少重大风险的目标,并加强对全球破坏性事件的准备;建立广泛而独特的合作伙伴关系,通过博士后研究员和学生交流、研究务虚会和研讨会来培养下一代数据科学家;通过招募和培训STEM中代表性不足的群体,包括女性和代表性不足的少数族裔学生,扩大参与范围,并通过PRISM数据库网络服务提供的方法、工具和数据集影响利益相关者社区。PRISM合作研究所的数据密集型跨学科研究方向包括:(i)关键风险指标(CRIs);研究人员将cri定义为可量化的信息,这些信息与由灾难性(累积)活动或灾难性事件导致的破坏性、毁灭性损失的累积或急性风险暴露特别相关。PRISM旨在识别许多领域的关键风险和现有指标,并通过利用数据革命制定新的危机评估指标;动态风险相互联系;研究人员将动态建模和预测CRI, PRISM旨在使用最先进的方法来适应CRI的复杂性,如非平稳、时空和多分辨率属性,稳健地识别关键社会风险的稀疏、可解释的领先-滞后风险依赖结构;系统风险指标(SRIs);PRISM将对跨领域的系统性风险进行建模,方法是预测关键风险溢出,并通过创建sri促进利益相关者干预分析;(iv)验证和利益相关者参与;调查人员将在具有不同风险暴露(急性与累积)和灾难特征(即时与持续)的综合案例研究中部署PRISM分析框架,并将定期征求关键利益相关者关于关键风险及其决策变量的意见,以更好地告知他们对政策与实践的操作理解。该项目是美国国家科学基金会“利用数据革命(HDR)大创意”活动的一部分,由HDR和美国国家科学基金会数学与物理科学理事会数学科学部共同支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management
  • DOI:
    10.1016/j.geosus.2020.03.001
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Ren;K. Banger;B. Tao;Jia Yang;Yawen Huang;H. Tian
  • 通讯作者:
    W. Ren;K. Banger;B. Tao;Jia Yang;Yawen Huang;H. Tian
Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping Systems of Kentucky
  • DOI:
    10.3390/rs13091615
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanjun Yang;B. Tao;L. Liang;Yawen Huang;C. Matocha;Chad D. Lee;M. Sama;B. El-Masri;W. Ren
  • 通讯作者:
    Yanjun Yang;B. Tao;L. Liang;Yawen Huang;C. Matocha;Chad D. Lee;M. Sama;B. El-Masri;W. Ren
A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments
  • DOI:
    10.1016/j.rser.2022.113042
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Yawen Huang;B. Tao;R. Lal;Klaus E. Lorenz;P. Jacinthe;R. Shrestha;Xiongxiong Bai;M. Singh;L. Lindsey;W. Ren
  • 通讯作者:
    Yawen Huang;B. Tao;R. Lal;Klaus E. Lorenz;P. Jacinthe;R. Shrestha;Xiongxiong Bai;M. Singh;L. Lindsey;W. Ren
Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions
生物炭作为负排放技术:温室气体排放实地研究综合
  • DOI:
    10.1002/jeq2.20475
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Shrestha, Raj K.;Jacinthe, Pierre‐Andre;Lal, Rattan;Lorenz, Klaus;Singh, Maninder P.;Demyan, Scott M.;Ren, Wei;Lindsey, Laura E.
  • 通讯作者:
    Lindsey, Laura E.
Instream sensor results suggest soil–plant processes produce three distinct seasonal patterns of nitrate concentrations in the Ohio River Basin
河内传感器结果表明,土壤植物过程在俄亥俄河流域产生了三种不同的硝酸盐浓度季节性模式
  • DOI:
    10.1111/1752-1688.13107
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gerlitz, Morgan;Fox, Jimmy;Ford, William;Husic, Admin;Mahoney, Tyler;Armstead, Mindy;Hendricks, Susan;Crain, Angela;Backus, Jason;Pollock, Erik
  • 通讯作者:
    Pollock, Erik
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Ren其他文献

Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates
稀土硫卤化物:范德华层状 Kitaev 自旋液体家族的候选者
  • DOI:
    10.1088/0256-307x/38/4/047502
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianting Ji;Mengjie Sun;Yanzhen Cai;Yimeng Wang;Yingqi Sun;Wei Ren;Zheng Zhang;Feng Jin;Qingming Zhang
  • 通讯作者:
    Qingming Zhang
A gyrB oligo nucleotide microarray for the specific detection of pathogenic Legionella and three Legionella pneumophila subsp.
用于特异性检测致病性军团菌和三种嗜肺军团菌亚种的 gyrB 寡核苷酸微阵列。
Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy
通过超分辨光子力显微镜在溶液中进行亚飞牛顿力传感
  • DOI:
    10.1038/s41566-024-01462-7
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Xuchen Shan;Lei Ding;Dajing Wang;Shihui Wen;Jinlong Shi;Chaohao Chen;Yang Wang;Hongyan Zhu;Zhaocun Huang;Shen S. J. Wang;Xiaolan Zhong;Baolei Liu;Peter John Reece;Wei Ren;Weichang Hao;Xunyu Lu;Jie Lu;Qian Peter Su;Lingqian Chang;Lingdong Sun;Dayong Jin;Lei Jiang;Fan Wang
  • 通讯作者:
    Fan Wang
Effect of the Lüders plateau on the relationship between fracture toughness and constraint for pipeline steels
Lüders 平台对管线钢断裂韧性与约束关系的影响
  • DOI:
    10.1016/j.tafmec.2022.103354
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Yinhui Zhang;Jian Shuai;Zhiyang Lv;Wei Ren;Tieyao Zhang
  • 通讯作者:
    Tieyao Zhang
Association between Pericoronary Fat Attenuation Index Values and Plaque Composition Volume Fraction Measured by Coronary Computed Tomography Angiography.
冠状动脉计算机断层扫描血管造影测量的冠状动脉周围脂肪衰减指数值与斑块成分体积分数之间的关联。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    M. Jing;H. Xi;Yuanyuan Wang;Hao Zhu;Qiu Sun;Yuting Zhang;Wei Ren;Zheng Xu;L. Deng;Bin Zhang;T. Han;Junlin Zhou
  • 通讯作者:
    Junlin Zhou

Wei Ren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Ren', 18)}}的其他基金

CAREER: Quantifying Multi-Scale Climate-Smart-Agriculture Management for Triple Wins in Food production, Climate Mitigation, and Environmental Sustainability
职业:量化多尺度气候智能农业管理,实现粮食生产、气候减缓和环境可持续性三赢
  • 批准号:
    2327138
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    2326940
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Distributed Time-varying Coordination of Uncertain Nonlinear Multi-agent Systems: A Unified Model Reference Scheme
不确定非线性多智能体系统的分布式时变协调:统一模型参考方案
  • 批准号:
    2129949
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CAREER: Quantifying Multi-Scale Climate-Smart-Agriculture Management for Triple Wins in Food production, Climate Mitigation, and Environmental Sustainability
职业:量化多尺度气候智能农业管理,实现粮食生产、气候减缓和环境可持续性三赢
  • 批准号:
    2045235
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Distributed Joint Localization and Tracking for Multi-robot Networks Under Local Sensing and Communication Constraints with Theoretical Guarantees
具有理论保证的局部感知和通信约束下的多机器人网络分布式联合定位与跟踪
  • 批准号:
    2027139
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Distributed Multi-agent Continuous-time Optimization: Unbalanced Directed Graphs and Constrained Networked Games
分布式多智能体连续时间优化:不平衡有向图和约束网络博弈
  • 批准号:
    1920798
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Distributed Continuous-time Optimization for Multi-agent Dynamical Systems under Realistic Challenges
现实挑战下多智能体动态系统的分布式连续时间优化
  • 批准号:
    1611423
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Robust Distributed Average Tracking for Networked Systems
网络系统的鲁棒分布式平均跟踪
  • 批准号:
    1537729
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Distributed Nonlinear Multi-agent Coordination in Asymmetric Switching Networks: A Sequential Comparison Framework
非对称交换网络中的分布式非线性多智能体协调:顺序比较框架
  • 批准号:
    1307678
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CSR-EHCS(CPS), SM: Nature-inspired Control of Networked Cyber-physical Systems
CSR-EHCS(CPS),SM:网络信息物理系统的自然启发控制
  • 批准号:
    1221384
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Belmont Forum Collaborative Research: Climate-Induced Migration in Africa and Beyond: Big Data and Predictive Analytics
贝尔蒙特论坛合作研究:非洲及其他地区气候引起的移民:大数据和预测分析
  • 批准号:
    2310908
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
  • 批准号:
    2240281
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
  • 批准号:
    2240282
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
  • 批准号:
    2320697
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Ideas Lab: Collaborative Research: Integrating cross-kingdom lncRNA genetic and functional interactions to build predictive network models
创意实验室:协作研究:整合跨界 lncRNA 遗传和功能相互作用,构建预测网络模型
  • 批准号:
    2243562
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
  • 批准号:
    2320698
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334386
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334385
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Digital Twin Predictive Reliability Modeling of Solid-State Transformers
合作研究:固态变压器的数字孪生预测可靠性建模
  • 批准号:
    2228873
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329801
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了