CAREER: Privacy-Aware Collaborative Sensing and Control for Cloud-Enabled Automotive Vehicles
职业:支持云的汽车的隐私感知协作传感和控制
基本信息
- 批准号:2045436
- 负责人:
- 金额:$ 53.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development Program (CAREER) grant will support research that will contribute novel methodologies related to cloud-enabled automotive vehicles, promoting both the progress of science and advancing transportation safety and efficiency. With the advent of 5G technology, cloud computing is expected to revolutionize automotive applications by providing “big data” and real-time, high-fidelity computing capabilities. Despite its promise, the use of cloud computing in automotive vehicle control and sensing still has limited success due to concerns in communication privacy and real-time constraints inherent to many automotive systems. This award supports fundamental research that addresses the major challenges in cloud-based control, collaborative sensing, decentralized optimization, and privacy preservation. The new designs and methodologies will offer a transformative framework in cloud-facilitated collaborative sensing and control that seamlessly integrate cloud and vehicle resources to enable smarter, safer, and greener next-generation automotive systems. This research is synergistic with key societal goals related to developing efficient, secure, and safe transportation systems. Therefore, results from this research will benefit the U.S. economy and life quality. This research involves several disciplines including control theory, machine learning, vehicle dynamics, and privacy preservation. The multi-disciplinary approach also facilitates the participation of underrepresented groups in research and positively impacts engineering education.The cloud-facilitated collaborative sensing and control is expected to greatly enhance vehicle control performance, and achieve improved safety, energy efficiency, and ride comfort. In pursuit of this goal, four closely integrated research objectives are planned: 1) Develop a novel privacy-preserving, learning-based collaborative sensing framework to enable the exploitation of multiple heterogeneous vehicles to iteratively improve the estimation of important road information (e.g., black ice and pothole) while preserving privacy; 2) Formalize and synthesize privacy-aware cloud-facilitated control to seamlessly integrate cloud and onboard controls for enhanced performance without leaking vehicle privacy; 3) Develop a computationally-efficient, privacy-preserving decentralized control framework by explicitly exploiting the sparse communication/constraint topologies in connected vehicles, and 4) Evaluate and validate the frameworks through extensive simulations and experiments. Collectively, advances from these research endeavors are expected to make cloud-based vehicle controls practically viable, and it will create new accuracy-friendly and computationally-efficient privacy mechanisms for time-sensitive dynamical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展计划(Career)资助将支持研究,这些研究将贡献与云计算汽车相关的新方法,促进科学进步,提高交通安全和效率。随着5G技术的出现,云计算有望通过提供“大数据”和实时、高保真计算能力,彻底改变汽车应用。尽管前景光明,但由于许多汽车系统固有的通信隐私和实时限制,云计算在汽车车辆控制和传感中的应用仍然有限。该奖项支持解决基于云的控制、协同传感、分散优化和隐私保护等主要挑战的基础研究。新的设计和方法将为云协同传感和控制提供一个变革性框架,无缝集成云和车辆资源,以实现更智能、更安全、更环保的下一代汽车系统。这项研究与发展高效、安全、安全的交通系统相关的关键社会目标是协同的。因此,这项研究的结果将有利于美国的经济和生活质量。这项研究涉及多个学科,包括控制理论、机器学习、车辆动力学和隐私保护。多学科方法也促进了代表性不足的群体参与研究,并对工程教育产生积极影响。云辅助的协同传感和控制有望大大提高车辆控制性能,并实现更高的安全性、能源效率和乘坐舒适性。为了实现这一目标,计划开展四个紧密结合的研究目标:1)开发一种新的基于学习的隐私保护协同传感框架,使多异构车辆能够在保护隐私的同时迭代改进对重要道路信息(如黑冰和坑洼)的估计;2)形式化和综合隐私感知云辅助控制,无缝集成云和车载控制,在不泄露车辆隐私的情况下提高性能;3)通过明确利用互联车辆中的稀疏通信/约束拓扑,开发计算效率高、保护隐私的分散控制框架;4)通过广泛的模拟和实验评估和验证框架。总的来说,这些研究工作的进展有望使基于云的车辆控制切实可行,并将为时间敏感的动态系统创造新的精度友好和计算效率高的隐私机制。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simultaneous Suspension Control and Energy Harvesting Through Novel Design and Control of a New Nonlinear Energy Harvesting Shock Absorber
- DOI:10.1109/tvt.2022.3159734
- 发表时间:2021-06
- 期刊:
- 影响因子:6.8
- 作者:Mohammad R. Hajidavalloo;Joel A. Cosner;Zhaojian Li;Wei-Che Tai;Ziyou Song
- 通讯作者:Mohammad R. Hajidavalloo;Joel A. Cosner;Zhaojian Li;Wei-Che Tai;Ziyou Song
Privacy-Preserving Collaborative Estimation for Networked Vehicles With Application to Collaborative Road Profile Estimation
- DOI:10.1109/tits.2022.3154650
- 发表时间:2022-10
- 期刊:
- 影响因子:8.5
- 作者:Huan Gao;Zhaojian Li;Yongqiang Wang
- 通讯作者:Huan Gao;Zhaojian Li;Yongqiang Wang
Cloud-Assisted Collaborative Road Information Discovery With Gaussian Process: Application to Road Profile Estimation
- DOI:10.1109/tits.2022.3194093
- 发表时间:2021-10
- 期刊:
- 影响因子:8.5
- 作者:Mohammad R. Hajidavalloo;Zhaojian Li;Xin Xia;Ali Louati;Minghui Zheng;Weichao Zhuang
- 通讯作者:Mohammad R. Hajidavalloo;Zhaojian Li;Xin Xia;Ali Louati;Minghui Zheng;Weichao Zhuang
Privacy-Preserving Dynamic Average Consensus via State Decomposition: Case Study on Multi-Robot Formation Control
- DOI:10.1016/j.automatica.2022.110182
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Kaixiang Zhang;Zhaojian Li;Yongqiang Wang;Ali Louati;Jian Chen
- 通讯作者:Kaixiang Zhang;Zhaojian Li;Yongqiang Wang;Ali Louati;Jian Chen
Cloud-Assisted Nonlinear Model Predictive Control for Finite-Duration Tasks
- DOI:10.1109/tac.2022.3219293
- 发表时间:2021-06
- 期刊:
- 影响因子:6.8
- 作者:Nan Li;Kaixiang Zhang;Zhaojian Li;Vaibhav Srivastava;Xiang Yin
- 通讯作者:Nan Li;Kaixiang Zhang;Zhaojian Li;Vaibhav Srivastava;Xiang Yin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhaojian Li其他文献
Event-Triggered Cloud-based Nonlinear Model Predictive Control with Neighboring Extremal Adaptations
具有邻近极值适应的事件触发的基于云的非线性模型预测控制
- DOI:
10.1109/cdc51059.2022.9992783 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Amin Vahidi;Zhaojian Li;Nan Li;Kaixiang Zhang;Yan Wang - 通讯作者:
Yan Wang
A Unified Framework for Online Data-Driven Predictive Control with Robust Safety Guarantees
具有强大安全保证的在线数据驱动预测控制统一框架
- DOI:
10.48550/arxiv.2306.17270 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amin Vahidi;Kaian Chen;Kaixiang Zhang;Zhaojian Li;Yan Wang;Kai Wu - 通讯作者:
Kai Wu
Robust Learning and Control of Time-Delay Nonlinear Systems With Deep Recurrent Koopman Operators
具有深度循环库普曼算子的时滞非线性系统的鲁棒学习和控制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:12.3
- 作者:
Minghao Han;Zhaojian Li;Xiang Yin;Xunyuan Yin - 通讯作者:
Xunyuan Yin
Simultaneous road profile estimation and anomaly detection with an input observer and a jump diffusion process estimator
使用输入观察器和跳跃扩散过程估计器同时进行道路轮廓估计和异常检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Zhaojian Li;Uros Kalabic;I. Kolmanovsky;E. Atkins;Jianbo Lu;Dimitar Filev - 通讯作者:
Dimitar Filev
Introduction to the focused section on novel sensing and multi-sensor fusion in robotics
- DOI:
10.1007/s41315-022-00242-2 - 发表时间:
2022-05-23 - 期刊:
- 影响因子:2.000
- 作者:
Zhenhua Xiong;Balakumar Balasingam;Min Li;Zhaojian Li;Min Liu;Hungsun Son;Yancheng Wang - 通讯作者:
Yancheng Wang
Zhaojian Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhaojian Li', 18)}}的其他基金
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
- 批准号:
2320698 - 财政年份:2023
- 资助金额:
$ 53.38万 - 项目类别:
Standard Grant
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
- 批准号:
2219488 - 财政年份:2022
- 资助金额:
$ 53.38万 - 项目类别:
Standard Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
- 批准号:
2030411 - 财政年份:2020
- 资助金额:
$ 53.38万 - 项目类别:
Standard Grant
NRI: INT: SMART: Soft Multi-Arm RoboT for Synergistic Collaboration with Humans
NRI:INT:SMART:用于与人类协同协作的软多臂机器人
- 批准号:
2024649 - 财政年份:2020
- 资助金额:
$ 53.38万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 53.38万 - 项目类别:
Standard Grant
Privacy-Aware and Personalised Explanation Overlays for Recommender Systems
推荐系统的隐私意识和个性化解释叠加
- 批准号:
DP240101108 - 财政年份:2024
- 资助金额:
$ 53.38万 - 项目类别:
Discovery Projects
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 53.38万 - 项目类别:
Standard Grant
Secure, Privacy-aware, and Trusted Data Share in Smart Mobility
智能移动中的安全、隐私意识和可信数据共享
- 批准号:
EP/Y002946/1 - 财政年份:2024
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
SaTC: CORE: Medium: Situation-Aware Identification and Rectification of Regrettable Privacy Decisions
SaTC:核心:媒介:对令人遗憾的隐私决策进行情境感知识别和纠正
- 批准号:
2344951 - 财政年份:2023
- 资助金额:
$ 53.38万 - 项目类别:
Continuing Grant
Collaborative Research: SII-NRDZ-SBE: Enabling Fairness-Aware and Privacy-Preserving Spatial Spectrum Sharing
合作研究:SII-NRDZ-SBE:实现公平意识和隐私保护的空间频谱共享
- 批准号:
2332010 - 财政年份:2023
- 资助金额:
$ 53.38万 - 项目类别:
Standard Grant
Secure Outsourcing of Genotype Imputation for Privacy-aware Genomic Analysis (RO1HE21)
用于隐私意识基因组分析的基因型插补的安全外包 (RO1HE21)
- 批准号:
10587347 - 财政年份:2023
- 资助金额:
$ 53.38万 - 项目类别:
SaTC: CORE: Medium: Designing Privacy-Aware Social Companion Robots
SaTC:核心:媒介:设计具有隐私意识的社交伴侣机器人
- 批准号:
2247381 - 财政年份:2023
- 资助金额:
$ 53.38万 - 项目类别:
Standard Grant
Collaborative Research: SII-NRDZ-SBE: Enabling Fairness-Aware and Privacy-Preserving Spatial Spectrum Sharing
合作研究:SII-NRDZ-SBE:实现公平意识和隐私保护的空间频谱共享
- 批准号:
2332011 - 财政年份:2023
- 资助金额:
$ 53.38万 - 项目类别:
Standard Grant
Privacy-Aware Federated Learning for Breast Cancer Risk Assessment
用于乳腺癌风险评估的隐私意识联合学习
- 批准号:
10742425 - 财政年份:2023
- 资助金额:
$ 53.38万 - 项目类别: