FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
基本信息
- 批准号:2219488
- 负责人:
- 金额:$ 30.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project provides a collaborative reinforcement learning approach for multi-robot systems that ensures safety and is privacy-preserving. The approach enables robots to continuously learn and adapt to dynamic situations within the systems constraints. Moreover, this new approach ensures that the private information of the participating robots, such as identity and position, can be protected in collaborative tasks involving multiple participating robots. While the approach for multi-robot learning is general, it has application to intelligent transportation systems on roadways driven by autonomous and semi-autonomous cars and trucks. A demonstration of this approach is to be conducted in a full-scale test environment of a realistic urban setting.This project combines model-based safety with model-free reinforcement learning to enable reinforcement learning's applicability to safety-critical collaborative multi-robot systems. It will first address single-robot reinforcement learning using a deep Koopman-based safety regulation for general nonlinear robotic systems to guarantee safety while retaining learning efficiency. The result will then be extended to multi-robot collective reinforcement learning where robots are deployed in shared, contested, or resource-constrained environments. By exploiting the inherent dynamics of collaborative learning, the project will also enable dynamics-based privacy protection for collected and shared data during learning. Different from conventional privacy mechanisms that either trade accuracy for privacy or incur heavy computation/communication overhead, the dynamics-enabled privacy approach can maintain learning optimality while incurring little computation/communication overhead. The algorithms and frameworks will be evaluated using both numerical simulations and experiments with real connected vehicles on real tracks. Results of the project will be used to enrich both graduate and undergraduate courses. The PIs will also use existing various on-going outreach opportunities to energize interests in STEM in K-12 students and community college technicians.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目为多机器人系统提供了一种协作强化学习方法,以确保安全和隐私保护。该方法使机器人能够在系统约束下不断学习和适应动态情况。此外,这种新方法确保了参与机器人的身份和位置等隐私信息在涉及多个参与机器人的协作任务中得到保护。虽然多机器人学习的方法是通用的,但它可以应用于由自主和半自动汽车和卡车驱动的道路上的智能交通系统。这种方法的演示将在一个真实的城市环境的全面测试环境中进行。该项目将基于模型的安全性与无模型强化学习相结合,使强化学习适用于安全关键型协作多机器人系统。它将首先使用基于深度koopman的一般非线性机器人系统安全调节来解决单机器人强化学习问题,以保证安全同时保持学习效率。然后将结果扩展到多机器人集体强化学习,其中机器人部署在共享,竞争或资源受限的环境中。通过利用协作学习的内在动态,该项目还将为学习过程中收集和共享的数据提供基于动态的隐私保护。与传统的隐私机制(要么以准确性换取隐私,要么导致沉重的计算/通信开销)不同,启用动态的隐私方法可以在产生很少的计算/通信开销的同时保持学习的最优性。算法和框架将通过数值模拟和真实连接车辆在真实轨道上的实验进行评估。该项目的成果将用于丰富研究生和本科课程。pi还将利用现有的各种正在进行的外展机会,激发K-12学生和社区大学技术人员对STEM的兴趣。该项目由跨部门机器人基础研究项目支持,由工程(ENG)和计算机与信息科学与工程(CISE)联合管理和资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhaojian Li其他文献
Event-Triggered Cloud-based Nonlinear Model Predictive Control with Neighboring Extremal Adaptations
具有邻近极值适应的事件触发的基于云的非线性模型预测控制
- DOI:
10.1109/cdc51059.2022.9992783 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Amin Vahidi;Zhaojian Li;Nan Li;Kaixiang Zhang;Yan Wang - 通讯作者:
Yan Wang
A Unified Framework for Online Data-Driven Predictive Control with Robust Safety Guarantees
具有强大安全保证的在线数据驱动预测控制统一框架
- DOI:
10.48550/arxiv.2306.17270 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amin Vahidi;Kaian Chen;Kaixiang Zhang;Zhaojian Li;Yan Wang;Kai Wu - 通讯作者:
Kai Wu
Robust Learning and Control of Time-Delay Nonlinear Systems With Deep Recurrent Koopman Operators
具有深度循环库普曼算子的时滞非线性系统的鲁棒学习和控制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:12.3
- 作者:
Minghao Han;Zhaojian Li;Xiang Yin;Xunyuan Yin - 通讯作者:
Xunyuan Yin
Simultaneous road profile estimation and anomaly detection with an input observer and a jump diffusion process estimator
使用输入观察器和跳跃扩散过程估计器同时进行道路轮廓估计和异常检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Zhaojian Li;Uros Kalabic;I. Kolmanovsky;E. Atkins;Jianbo Lu;Dimitar Filev - 通讯作者:
Dimitar Filev
Introduction to the focused section on novel sensing and multi-sensor fusion in robotics
- DOI:
10.1007/s41315-022-00242-2 - 发表时间:
2022-05-23 - 期刊:
- 影响因子:2.000
- 作者:
Zhenhua Xiong;Balakumar Balasingam;Min Li;Zhaojian Li;Min Liu;Hungsun Son;Yancheng Wang - 通讯作者:
Yancheng Wang
Zhaojian Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhaojian Li', 18)}}的其他基金
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
- 批准号:
2320698 - 财政年份:2023
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
CAREER: Privacy-Aware Collaborative Sensing and Control for Cloud-Enabled Automotive Vehicles
职业:支持云的汽车的隐私感知协作传感和控制
- 批准号:
2045436 - 财政年份:2021
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
- 批准号:
2030411 - 财政年份:2020
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
NRI: INT: SMART: Soft Multi-Arm RoboT for Synergistic Collaboration with Humans
NRI:INT:SMART:用于与人类协同协作的软多臂机器人
- 批准号:
2024649 - 财政年份:2020
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 30.36万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 30.36万 - 项目类别:
Standard Grant