Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
基本信息
- 批准号:2320698
- 负责人:
- 金额:$ 20.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will fund research that enables advancements in transportation efficiency and safety through the deployment of virtually connected and automated vehicles among human-driven vehicles, thereby promoting the progress of science and advancing the national prosperity. While the potential benefits for fuel efficiency and road safety from full vehicle automation and vehicle-to-vehicle communication peak in a traffic system without human drivers, mixed traffic scenarios with coexistence between human-driven vehicles and automated vehicles will be the norm in the intermediate term. A major challenge to the control of automated vehicles in such environments is the requirement that the behavior of the human drivers either be reliably described using explicit car-following models or accurately predicted using computationally efficient, data-driven techniques, neither of which is currently possible. This project aims to resolve this challenge by developing a new model-free, data-efficient control and optimization framework that will enable fast decision-making for efficient, robust, and safe coordination of multiple connected and automated vehicles in mixed traffic systems. The results will be disseminated to the research community and the automotive industry through sharing of open-source software code and organization of a workshop with speakers from both academia and industry. These efforts are closely integrated with educational and outreach activities that aim to increase the participation of undergraduate and high-school students in engineering research.This research aims to develop the foundations of efficient and scalable control designs for connected and automated vehicles that can meet real-time computational constraints and guarantee safe performance in mixed traffic, without explicit modeling of the behavior of human-driven vehicles. It accomplishes this outcome by building a data-driven predictive control framework in which system-level cost functions and constraints are synergistically designed to handle unknown and uncertain traffic dynamics directly from input/output data, and adaptive data library updates respond to time-varying traffic conditions. Additionally, it develops algorithms for scalable, online data compression and distributed optimization that exploit cascading system structures to decompose centralized predictive control problems into those of lower dimension without compromising control performance. Extensive simulations and field experiments conducted in collaboration with an industry partner will be used to evaluate the theoretical outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将资助通过在人类驾驶的车辆中部署虚拟连接和自动驾驶车辆来提高运输效率和安全性的研究,从而促进科学进步和促进国家繁荣。虽然在没有人类驾驶员的交通系统中,全车辆自动化和车对车通信对燃油效率和道路安全的潜在好处达到顶峰,但人类驾驶车辆和自动驾驶车辆共存的混合交通场景将成为中期的常态。在这样的环境中控制自动驾驶汽车的一个主要挑战是要求人类驾驶员的行为要么使用显式的汽车跟随模型进行可靠描述,要么使用计算效率高的数据驱动技术进行准确预测,这两种方法目前都不可能实现。该项目旨在通过开发一种新的无模型、数据高效的控制和优化框架来解决这一挑战,该框架将实现快速决策,以实现混合交通系统中多辆互联和自动化车辆的高效、稳健和安全协调。研究结果将通过分享开源软件代码和组织一个有学术界和工业界发言人参加的研讨会传播给研究界和汽车工业。这些努力与旨在提高本科生和高中生参与工程研究的教育和推广活动紧密结合,本研究旨在为互联和自动驾驶车辆开发高效和可扩展的控制设计奠定基础,这些控制设计可以满足实时计算约束并确保混合交通中的安全性能,而无需明确建模人类驾驶车辆的行为。它通过构建一个数据驱动的预测控制框架来实现这一结果,在该框架中,系统级成本函数和约束被协同设计,以直接从输入/输出数据处理未知和不确定的交通动态,并且自适应数据库更新响应时变的交通状况。此外,它还开发了可扩展的在线数据压缩和分布式优化算法,这些算法利用级联系统结构将集中式预测控制问题分解为较低维度的问题,而不会影响控制性能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhaojian Li其他文献
Event-Triggered Cloud-based Nonlinear Model Predictive Control with Neighboring Extremal Adaptations
具有邻近极值适应的事件触发的基于云的非线性模型预测控制
- DOI:
10.1109/cdc51059.2022.9992783 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Amin Vahidi;Zhaojian Li;Nan Li;Kaixiang Zhang;Yan Wang - 通讯作者:
Yan Wang
A Unified Framework for Online Data-Driven Predictive Control with Robust Safety Guarantees
具有强大安全保证的在线数据驱动预测控制统一框架
- DOI:
10.48550/arxiv.2306.17270 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amin Vahidi;Kaian Chen;Kaixiang Zhang;Zhaojian Li;Yan Wang;Kai Wu - 通讯作者:
Kai Wu
Robust Learning and Control of Time-Delay Nonlinear Systems With Deep Recurrent Koopman Operators
具有深度循环库普曼算子的时滞非线性系统的鲁棒学习和控制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:12.3
- 作者:
Minghao Han;Zhaojian Li;Xiang Yin;Xunyuan Yin - 通讯作者:
Xunyuan Yin
Simultaneous road profile estimation and anomaly detection with an input observer and a jump diffusion process estimator
使用输入观察器和跳跃扩散过程估计器同时进行道路轮廓估计和异常检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Zhaojian Li;Uros Kalabic;I. Kolmanovsky;E. Atkins;Jianbo Lu;Dimitar Filev - 通讯作者:
Dimitar Filev
Introduction to the focused section on novel sensing and multi-sensor fusion in robotics
- DOI:
10.1007/s41315-022-00242-2 - 发表时间:
2022-05-23 - 期刊:
- 影响因子:2.000
- 作者:
Zhenhua Xiong;Balakumar Balasingam;Min Li;Zhaojian Li;Min Liu;Hungsun Son;Yancheng Wang - 通讯作者:
Yancheng Wang
Zhaojian Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhaojian Li', 18)}}的其他基金
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
- 批准号:
2219488 - 财政年份:2022
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
CAREER: Privacy-Aware Collaborative Sensing and Control for Cloud-Enabled Automotive Vehicles
职业:支持云的汽车的隐私感知协作传感和控制
- 批准号:
2045436 - 财政年份:2021
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
- 批准号:
2030411 - 财政年份:2020
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
NRI: INT: SMART: Soft Multi-Arm RoboT for Synergistic Collaboration with Humans
NRI:INT:SMART:用于与人类协同协作的软多臂机器人
- 批准号:
2024649 - 财政年份:2020
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 20.2万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
- 批准号:
2231254 - 财政年份:2023
- 资助金额:
$ 20.2万 - 项目类别:
Standard Grant