CAREER: Robust and High-Performance Computational Methods for Simulating Metamaterial-Based Optical Devices
职业:用于模拟基于超材料的光学设备的稳健且高性能的计算方法
基本信息
- 批准号:2045636
- 负责人:
- 金额:$ 47.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project centers around the development of novel computational approaches to simulate metamaterial-based optical devices. Such optical geometries allow one to manipulate light on a microscopic scale. The project addresses a critical need for robust and controllable numerical schemes that can reliably describe the optical response of complex microscale geometries. The project will enable a broader scientific community to perform direct numerical simulations of optical devices and will help to bridge the gap between physical theory and optical device engineering. In addition to the dissemination of the research to the scientific community, the PI will present the work to students through the proposed educational agenda targeting the graduate and undergraduate curriculum offered in the Department of Mathematics at Texas A&M University: a research-integrated, project-based graduate-level course that bridges the gap between numerical analysis and interdisciplinary research; a project-centered collaborative research program for undergraduate students that highlights interdisciplinary research and applied computational mathematics; and an accompanying summer school. The educational program will teach core competences in computational sciences highlighting collaborative research and the multidisciplinary character of the computational sciences. Efforts will be made to attract female and minority students to these undergraduate activities and stimulate their interest in exciting new research topics in scientific computing and optics.Modern nanoscale optical devices are based on an intricate interplay of incident electromagnetic waves and the electron structure of the nanodevice. The research component of the proposal is organized around two complementary directions addressing a critical need for robust and controllable numerical schemes that can reliably describe the optical response of complex nanoscale geometries: (i) The first research direction is concerned with the development and analysis of computational methods for simulating time-harmonic non-local conductivity responses. (ii) The second research direction will focus on the development and analysis of highly scalable and distributed time-stepping methods that couple time-dependent Maxwell's equations with 2D evolution equations modeling a subscale conductivity response. In both directions the PI will connect the algorithmic and numerical development to interdisciplinary applications. The numerical and algorithmic development will be carried out alongside a number of research collaborations that are concerned about the design and simulation of nanoscale optical devices for modulation and control of the path of light, and the validation of fluid mechanical models for electron response against recent experimental results. All these projects depend on a strong computational component which current methods do not provide and which is not available commercially.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的中心是开发新的计算方法来模拟基于超材料的光学器件。这种光学几何形状允许人们在微观尺度上操纵光。该项目解决了一个强大的和可控的数值方案,可以可靠地描述复杂的微尺度几何形状的光学响应的关键需求。该项目将使更广泛的科学界能够对光学器件进行直接的数值模拟,并将有助于弥合物理理论和光学器件工程之间的差距。除了向科学界传播研究成果外,PI还将通过针对德克萨斯州A M大学数学系提供的研究生和本科生课程的拟议教育议程向学生介绍这项工作&:一个研究综合的,基于项目的研究生课程,弥合数值分析和跨学科研究之间的差距;一个以项目为中心的合作研究计划,为本科生,突出跨学科研究和应用计算数学;和一个伴随的暑期学校。该教育计划将教授计算科学的核心能力,突出合作研究和计算科学的多学科特征。将努力吸引女生和少数民族学生参加这些本科生活动,激发他们对科学计算和光学领域令人兴奋的新研究课题的兴趣。现代纳米级光学器件是基于入射电磁波和纳米器件电子结构的复杂相互作用。该提案的研究部分围绕两个互补方向组织,解决了对鲁棒且可控的数值方案的迫切需求,这些方案可以可靠地描述复杂纳米级几何形状的光学响应:(i)第一个研究方向涉及模拟时间的计算方法的开发和分析谐波非局部电导率响应。(ii)第二个研究方向将侧重于高度可扩展和分布式时间步进方法的开发和分析,该方法将时间相关的麦克斯韦方程与模拟子尺度电导率响应的2D演化方程相结合。在这两个方向上,PI将把算法和数值开发与跨学科应用联系起来。数值和算法的开发将与一些研究合作一起进行,这些合作涉及用于调制和控制光路的纳米级光学器件的设计和模拟,以及针对最近实验结果的电子响应的流体力学模型的验证。所有这些项目都依赖于一个强大的计算组件,目前的方法不提供,这是不可商业化的。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure-Preserving Finite-Element Schemes for the Euler-Poisson Equations
欧拉-泊松方程的保结构有限元格式
- DOI:10.4208/cicp.oa-2022-0205
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Maier, Matthias;null, John N.;Tomas, Ignacio
- 通讯作者:Tomas, Ignacio
On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier–Stokes equations
针对可压缩纳维斯托克斯方程实现鲁棒且高效的基于有限元的并行求解器
- DOI:10.1016/j.cma.2021.114250
- 发表时间:2022
- 期刊:
- 影响因子:7.2
- 作者:Guermond, Jean-Luc;Kronbichler, Martin;Maier, Matthias;Popov, Bojan;Tomas, Ignacio
- 通讯作者:Tomas, Ignacio
Lorentz resonance in the homogenization of plasmonic crystals
- DOI:10.1098/rspa.2021.0609
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Wei Li;R. Lipton;Matthias Maier
- 通讯作者:Wei Li;R. Lipton;Matthias Maier
Efficient Parallel 3D Computation of the Compressible Euler Equations with an Invariant-domain Preserving Second-order Finite-element Scheme
具有不变域保留二阶有限元格式的可压缩欧拉方程的高效并行 3D 计算
- DOI:10.1145/3470637
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Maier, Matthias;Kronbichler, Martin
- 通讯作者:Kronbichler, Martin
Robust second-order approximation of the compressible Euler equations with an arbitrary equation of state
具有任意状态方程的可压缩欧拉方程的鲁棒二阶近似
- DOI:10.1016/j.jcp.2023.111926
- 发表时间:2023
- 期刊:
- 影响因子:4.1
- 作者:Clayton, Bennett;Guermond, Jean-Luc;Maier, Matthias;Popov, Bojan;Tovar, Eric J.
- 通讯作者:Tovar, Eric J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Maier其他文献
Flood Retention and Drinking Water Supply – Preventing Conflicts of Interest
洪水滞留与饮用水供应——防止利益冲突
- DOI:
10.1065/jss2006.05.157 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:3.000
- 作者:
Matthias Maier;Dirk Kühlers;Heinz-Jürgen Brauch;Michael Fleig;Dietrich Maier;Gerhard H. Jirka;Ulf Mohrlok;Ekkehart Bethge;Hans Helmut Bernhart;Boris Lehmann;Gudrun Hillebrand;Jan Wölz;Henner Hollert - 通讯作者:
Henner Hollert
1:1 or 2:1 ‐ Does it matter for calcined clay as supplementary cementitious material?
1:1 或 2:1 - 煅烧粘土作为辅助胶凝材料重要吗?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Karl‐Christian Thienel;Sebastian Scherb;Nancy Beuntner;Matthias Maier;R. Sposito - 通讯作者:
R. Sposito
LinearOperator Benchmarks, Version 1.0.0
LinearOperator 基准测试,版本 1.0.0
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Matthias Maier;Mauro Bardelloni;L. Heltai - 通讯作者:
L. Heltai
New application of a traditional analytical method – arsenic removal from water works sludge during iron(III) chloride coagulant production
- DOI:
10.1007/s002160100910 - 发表时间:
2001-09-25 - 期刊:
- 影响因子:3.800
- 作者:
Dietrich Maier;Matthias Maier;Frank Oberacker - 通讯作者:
Frank Oberacker
First-Order Greedy Invariant-Domain Preserving Approximation for Hyperbolic Problems: Scalar Conservation Laws, and p-System
- DOI:
10.1007/s10915-024-02592-4 - 发表时间:
2024-06-27 - 期刊:
- 影响因子:3.300
- 作者:
Jean-Luc Guermond;Matthias Maier;Bojan Popov;Laura Saavedra;Ignacio Tomas - 通讯作者:
Ignacio Tomas
Matthias Maier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Maier', 18)}}的其他基金
Efficient and Adaptive Methods for Simulating Multiscale Effects in Optical Metamaterials
模拟光学超材料中多尺度效应的高效自适应方法
- 批准号:
1912847 - 财政年份:2019
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Performance-Driven Robust Topology Optimization of Functionally Graded Lattice Structures
功能梯度晶格结构的性能驱动的鲁棒拓扑优化
- 批准号:
EP/Y023455/1 - 财政年份:2023
- 资助金额:
$ 47.04万 - 项目类别:
Fellowship
Theory and Application for Robust and High-Performance Systems Programming Languages
鲁棒高性能系统编程语言的理论与应用
- 批准号:
22KJ0561 - 财政年份:2023
- 资助金额:
$ 47.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Uniquely high conversion and mechanically robust composite restorative materials for functionally elevated performance
独特的高转化率和机械坚固的复合修复材料,可提高功能性能
- 批准号:
10646845 - 财政年份:2023
- 资助金额:
$ 47.04万 - 项目类别:
Smart high performance concrete composites for developing robust and resilient infrastructures
智能高性能混凝土复合材料,用于开发坚固且有弹性的基础设施
- 批准号:
RGPIN-2019-05613 - 财政年份:2022
- 资助金额:
$ 47.04万 - 项目类别:
Discovery Grants Program - Individual
Realization of highly robust, high-performance, low-cost high-temperature superconducting coil systems without protection
实现高鲁棒、高性能、低成本的无保护高温超导线圈系统
- 批准号:
22H01478 - 财政年份:2022
- 资助金额:
$ 47.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
FEA-SMC: Enabling short fibre composites in high-performance aerospace applications through robust simulation technology
FEA-SMC:通过强大的仿真技术在高性能航空航天应用中实现短纤维复合材料
- 批准号:
10037901 - 财政年份:2022
- 资助金额:
$ 47.04万 - 项目类别:
BEIS-Funded Programmes
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
- 批准号:
10684375 - 财政年份:2022
- 资助金额:
$ 47.04万 - 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
- 批准号:
10570160 - 财政年份:2022
- 资助金额:
$ 47.04万 - 项目类别:
STTR Phase I: Robust High-Performance Organic Electro-Optic Materials
STTR 第一阶段:稳健的高性能有机电光材料
- 批准号:
2036514 - 财政年份:2021
- 资助金额:
$ 47.04万 - 项目类别:
Standard Grant
Smart high performance concrete composites for developing robust and resilient infrastructures
智能高性能混凝土复合材料,用于开发坚固且有弹性的基础设施
- 批准号:
RGPIN-2019-05613 - 财政年份:2021
- 资助金额:
$ 47.04万 - 项目类别:
Discovery Grants Program - Individual