CAREER: Towards a Principled Framework for Resilient, Data Efficient and Scalable Reinforcement Learning for Control

职业:建立一个有弹性、数据高效且可扩展的强化学习控制原则框架

基本信息

项目摘要

The success of the traditional control system design depends crucially on the availability of tractable system models with known parameters, well-understood sources of uncertainty and clearly specified objectives. These assumptions are no longer true in the emerging paradigm of intelligent and autonomous large-scale engineering systems, such as next generation electricity systems. A data-driven machine learning approach that takes advantage of large amounts of data coming from such systems can provide a promising path forward. However, unlike the remarkable successes of machine learning in classification problems such as image recognition, reinforcement learning (RL) that addresses the problem of “learning to control” has seen achievements limited to more structured or simulated environments, and its successes in real-world engineering systems are not as prominent. There are three critical issues that significantly impede the success of RL in real-world engineering systems: lack of resiliency, data efficiency, and scalability. This CAREER proposal develops a principled approach for the RL-based design of control algorithms for large-scale real-world engineering systems, by overcoming the fundamental challenges of resiliency, data efficiency, and scalability. The main application domain of interest is electricity systems, which guides the problem formulation and solution approaches, and lends credence to the algorithms using real-world examples. The project has an innovative education plan that includes the ‘Aggie DeepRacer Project’ that follows an ‘experiential learning’ approach for integrating the research in RL into the educational curriculum. Mentoring students from underrepresented minorities through collaboration with the Louis Stokes Alliances for Minority Participation (LSAMP) program, and hosting teachers from low socioeconomic status schools with a high percentage of minority students strengthens the project. Project outcomes include development of activity-based learning modules for high school students and presenting them at the Aggie STEM summer camp and Physics and Engineering Festival. By developing a data-driven and learning-based approach for efficient control of power systems, this project also contributes to reducing the cost of fuel and operations, and hence significantly increasing the reliability of the overall energy system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统控制系统设计的成功关键取决于是否有易于处理的系统模型,这些模型具有已知的参数、易于理解的不确定性来源和明确规定的目标。这些假设在智能和自主的大型工程系统(如下一代电力系统)的新兴范例中不再适用。利用来自这类系统的大量数据的数据驱动的机器学习方法可以提供一条有希望的前进道路。然而,与机器学习在图像识别等经典fi阳离子问题上取得的显著成功不同,强化学习(RL)解决“学习控制”问题的成果仅限于更结构化或更模拟的环境,它在现实世界工程系统中的成功并不显著。在实际工程系统中,有三个关键问题严重阻碍了RL的成功:缺乏弹性、数据效率和可伸缩性。这项职业计划通过克服弹性、数据效率和可扩展性方面的根本挑战,为大型真实世界工程系统的基于RL的控制算法设计开发了一种原则性方法。主要的应用领域是电力系统,它指导问题的表达和解决方法,并使用真实世界的例子来证明算法的可靠性。该项目有一个创新的教育计划,其中包括‘Aggie Deepracer Project’,该项目遵循‘体验式学习’的方法,将RL的研究整合到教育课程中。通过与路易斯·斯托克斯少数族裔参与联盟(LSAMP)合作,指导少数族裔代表不足的学生,并接待来自社会经济地位较低、少数族裔学生比例较高的学校的教师,加强了该项目。项目成果包括为高中生开发以活动为基础的学习模块,并在Aggie STEM夏令营和物理工程节上展示这些模块。通过开发一种数据驱动和基于学习的方法来有效控制电力系统,该项目还有助于降低燃料和运营成本,从而显著提高整个能源系统的可靠性。该奖项反映了fi的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributionally Robust Behavioral Cloning for Robust Imitation Learning
  • DOI:
    10.1109/cdc49753.2023.10383976
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kishan Panaganti;Zaiyan Xu;D. Kalathil;Mohammad Ghavamzadeh
  • 通讯作者:
    Kishan Panaganti;Zaiyan Xu;D. Kalathil;Mohammad Ghavamzadeh
Meta-Learning Online Control for Linear Dynamical Systems
线性动力系统的元学习在线控制
DOPE: Doubly Optimistic and Pessimistic Exploration for Safe Reinforcement Learning
  • DOI:
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Archana Bura;Aria HasanzadeZonuzy;D. Kalathil;S. Shakkottai;J. Chamberland
  • 通讯作者:
    Archana Bura;Aria HasanzadeZonuzy;D. Kalathil;S. Shakkottai;J. Chamberland
Robust Reinforcement Learning using Least Squares Policy Iteration with Provable Performance Guarantees
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Badrinath;D. Kalathil
  • 通讯作者:
    K. Badrinath;D. Kalathil
Enhanced Meta Reinforcement Learning via Demonstrations in Sparse Reward Environments
通过稀疏奖励环境中的演示增强元强化学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dileep Kalathil其他文献

Approachability in Stackelberg Stochastic Games with Vector Costs
  • DOI:
    10.1007/s13235-016-0198-y
  • 发表时间:
    2016-07-04
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Dileep Kalathil;Vivek S. Borkar;Rahul Jain
  • 通讯作者:
    Rahul Jain
The impact of heavy-duty vehicle electrification on large power grids: A synthetic Texas case study
  • DOI:
    10.1016/j.adapen.2022.100093
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rayan El Helou;S. Sivaranjani;Dileep Kalathil;Andrew Schaper;Le Xie
  • 通讯作者:
    Le Xie
Decoupled Data-Based Approach for Learning to Control Nonlinear Dynamical Systems
用于学习控制非线性动力系统的基于解耦数据的方法
  • DOI:
    10.1109/tac.2021.3108552
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Ran Wang;Karthikeya S. Parun;i;Dan Yu;Dileep Kalathil;Suman Chakravorty
  • 通讯作者:
    Suman Chakravorty

Dileep Kalathil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dileep Kalathil', 18)}}的其他基金

CRII: CPS: Towards a Model-Based Reinforcement Learning Approach for Safe Operation of Distributed Energy Systems
CRII:CPS:面向分布式能源系统安全运行的基于模型的强化学习方法
  • 批准号:
    1850206
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
  • 批准号:
    DE240100109
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
  • 批准号:
    NE/Y001397/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Development of programmable nanomachines towards the enzymatic synthesis of peptide oligonucleotide conjugates
开发用于肽寡核苷酸缀合物酶促合成的可编程纳米机器
  • 批准号:
    EP/X019624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
  • 批准号:
    2327411
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了