CAREER: Brain Imaging Genetics via multimodal modular structure querying
职业:通过多模式模块化结构查询进行脑成像遗传学
基本信息
- 批准号:2045848
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Brain imaging genetics, which integrates the merits of brain imaging technologies and genetic data, has the potential to improve our understanding of the human brain. Recent studies have shown that brain imaging genetics is a powerful tool to discover the polygenic contributions for brain disorders and quantitatively characterize the neural systems affected by risk gene variants. This project will develop a series of novel computational tools to address the critical challenges and bottlenecks in current brain imaging genetics research, and will directly impact biomedical informatics, brain research, and data science. The success of this project will be used to develop new curriculums that incorporate research into the classroom and provide students from under-represented groups with opportunities to participate in biomedical and machine learning research.The main challenges in current brain imaging genetics are as follows. First, most existing brain imaging genetics studies assume the linear relationship between genes and imaging features. Considering the high dimensionality of brain magnetic resonance imaging (MRI) data and genetic data, this linearity is too simplistic. Second, traditional brain MRI research is suboptimal in characterizing brain dynamics because they usually focus on scalar statistics, which reduce the complex brain imaging data to a one-dimension and discard important informative brain network structures. In this project, we choose the brain modular structure as the feature representations. These kinds of representations can better describe the intermediate scale of brain network organization, rather than any global or local scales. The brain modular structure provides a promising bridge as the intermediate neuroendophenotype with a smaller dimension and a more focused objective to link genotypic and phenotypic traits. Moreover, how to derive the modular structure from multimodal data has not been well addressed. This project will provide efficient and biologically meaningful tools to map polygenetic components to phenotypes with the aid of brain modular features. The successful development of these new tools will have an immediate and strong impact on brain research, network science, and machine learning. Moreover, this project offers multidisciplinary training opportunities for trainees at all levels from K-12 to postdoctoral levels. Outcomes will be openly disseminated in peer-reviewed articles, outreach programs, and in the form of code/data repositories to maximize impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脑成像遗传学整合了脑成像技术和遗传数据的优点,有可能提高我们对人类大脑的理解。最近的研究表明,脑成像遗传学是发现大脑疾病的多基因贡献和定量表征受风险基因变异影响的神经系统的有力工具。该项目将开发一系列新颖的计算工具,以解决当前脑成像遗传学研究中的关键挑战和瓶颈,并将直接影响生物医学信息学,脑研究和数据科学。该项目的成功将用于开发新的课程,将研究纳入课堂,并为代表性不足的群体的学生提供参与生物医学和机器学习研究的机会。当前脑成像遗传学面临的主要挑战如下。首先,大多数现有的脑成像遗传学研究假设基因与成像特征之间存在线性关系。考虑到脑磁共振成像(MRI)数据和遗传数据的高维性,这种线性关系过于简单化。其次,传统的脑MRI研究主要集中在标量统计上,将复杂的脑成像数据简化为一维,丢弃了重要的信息脑网络结构,因此在表征脑动力学方面不够理想。在这个项目中,我们选择大脑模块结构作为特征表示。这类表征可以更好地描述大脑网络组织的中间尺度,而不是任何全局或局部尺度。大脑模块化结构作为连接基因型和表型性状的中间神经表型,以更小的维度和更集中的目标提供了一个有希望的桥梁。此外,如何从多模态数据中推导出模块化结构还没有得到很好的解决。该项目将提供有效的和有生物学意义的工具来绘制多基因成分的表型与大脑模块特征的帮助。这些新工具的成功开发将对大脑研究、网络科学和机器学习产生直接而强烈的影响。此外,本项目还为学员提供从K-12到博士后各个层次的多学科培训机会。成果将以同行评审文章、外展计划和代码/数据存储库的形式公开传播,以最大限度地发挥影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer
使用多模态图转换器揭示连续的大脑动态组织
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhao, Chongyue;Zhan, Liang;Thompson, Paul M.;Huang, Heng.
- 通讯作者:Huang, Heng.
CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical Graph Representation Learning
- DOI:10.1016/j.neunet.2021.07.028
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Haoteng Tang;Guixiang Ma;Lifang He;Heng Huang;L. Zhan
- 通讯作者:Haoteng Tang;Guixiang Ma;Lifang He;Heng Huang;L. Zhan
Hippocampal functional connectivity across age in an App knock-in mouse model of Alzheimer's disease.
- DOI:10.3389/fnagi.2022.1085989
- 发表时间:2022
- 期刊:
- 影响因子:4.8
- 作者:
- 通讯作者:
Disentangled and Proportional Representation Learning for Multi-View Brain Connectomes.
- DOI:10.1007/978-3-030-87234-2_48
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Zhang, Yanfu;Zhan, Liang;Wu, Shandong;Thompson, Paul;Huang, Heng
- 通讯作者:Huang, Heng
Explainable Contrastive Multiview Graph Representation of Brain, Mind, and Behavior
大脑、思想和行为的可解释对比多视图图表示
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhao, Chongyue;Zhan, Liang;Thompson, Paul M;Huang, Heng.
- 通讯作者:Huang, Heng.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Zhan其他文献
Modifying the aluminum current collector/active material layer interface through physical vapor deposition technology to achieve a high-performance sulfur cathode
通过物理气相沉积技术修饰铝集流体/活性材料层界面以实现高性能硫阴极
- DOI:
10.1016/j.electacta.2025.146562 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.600
- 作者:
Xuliang Fan;Fang Chen;Gaowei Zhang;Liang Zhan;Xunfu Zhou;Xiaosong Zhou;Ji Cheng Ding;Jing Li;Jun Zheng - 通讯作者:
Jun Zheng
Nanofibers with MoS<sub>2</sub> nanosheets encapsulated in carbon as a binder-free anode for superior lithium storage
- DOI:
10.1016/j.carbon.2018.12.074 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:
- 作者:
Xiu Zhang;Ya-kai Deng;Yan-li Wang;Liang Zhan;Shu-bin Yang;Yan Song - 通讯作者:
Yan Song
A high strength carbon nanofiber/honeycomb cordierite composite produced chemical vapor deposition
- DOI:
10.1016/j.carbon.2012.04.022 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:
- 作者:
Yan-li Wang;Xu-jian Wang;Liang Zhan;Wen-ming Qiao;Xiao-yi Liang;Li-cheng Ling - 通讯作者:
Li-cheng Ling
Effect of pre-oxidation on microcracks in graphite foams
- DOI:
10.1016/j.carbon.2010.08.021 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Juan Li;Can Wang;Cui-cui Zhang;Liang Zhan;Wen-ming Qiao;Xiao-yi Liang;Li-Cheng Ling - 通讯作者:
Li-Cheng Ling
Constructing asymmetric unsaturated copper coordination in Zinc(II)/Copper(I, II)-based metal-organic framework toward productive COsub2/sub-to-methanol photocatalytic conversion from COsub2/sub-capturing solution
构建基于锌(II)/铜(I,II)的金属有机框架中的不对称不饱和铜配位,以实现从捕获二氧化碳溶液中高效地将二氧化碳转化为甲醇的光催化反应
- DOI:
10.1016/j.apcata.2022.118970 - 发表时间:
2023-01-25 - 期刊:
- 影响因子:4.800
- 作者:
Kongguo Wu;Chuanlei Liu;Yuxiang Chen;Hao Jiang;Qilong Peng;Yu Chen;Diyi Fang;Benxian Shen;Qiumin Wu;Liang Zhan;Weizhen Sun; Di Wu;Hui Sun - 通讯作者:
Hui Sun
Liang Zhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Zhan', 18)}}的其他基金
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Super-resolution Ultrasound Imaging for High-resolution Functional Mapping of the Brain
职业:用于大脑高分辨率功能绘图的超分辨率超声成像
- 批准号:
2237166 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: MOEMS-based Head-mounted NIR-II Microscopy for Molecular Imaging of Brain Tumor in Freely Behaving Small Animal Models
职业:基于 MOEMS 的头戴式 NIR-II 显微镜,用于自由行为的小动物模型中脑肿瘤的分子成像
- 批准号:
2237142 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Mapping deep brain functions with super-resolution photoacoustic imaging
职业:通过超分辨率光声成像绘制大脑深部功能图
- 批准号:
2144788 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Multimodal Approach for Label-free Imaging of Lipidomic Changes in Brain
职业:大脑脂质组变化的无标记成像多模态方法
- 批准号:
2045640 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Ultrahigh-Resolution Magnetic Resonance Spectroscopic Imaging for Label-Free Molecular Imaging of the Brain
职业:用于大脑无标记分子成像的超高分辨率磁共振波谱成像
- 批准号:
1944249 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Robust Brain Imaging Genomics Data Mining Framework for Improved Cognitive Health
职业:用于改善认知健康的强大脑成像基因组数据挖掘框架
- 批准号:
1652943 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: New Developments on Experimental Designs for Pioneering Functional Brain Imaging Technologies
职业:先锋功能性脑成像技术实验设计的新进展
- 批准号:
1352213 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant