CAREER: Super-resolution Ultrasound Imaging for High-resolution Functional Mapping of the Brain

职业:用于大脑高分辨率功能绘图的超分辨率超声成像

基本信息

  • 批准号:
    2237166
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-15 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

The brain is the most complex organ in the human body. How does the brain work remain one of the most challenging scientific problems for humanity. For decades, scientists and engineers continually develop and refine new methods and techniques to advance our understanding of the brain. Out of these tools, imaging is essential for deciphering the brain because it allows us to directly visualize and investigate the complex brain tissues and their organizations and functional networks. However, even with the multitude of brain imaging technologies that are currently available, our ability to probe deep brain tissues beyond the cerebral cortex is still limited. This limitation can largely be attributed to the physics of imaging, which dictate the inevitable trade-off between how small of an object we can see and from how deep we can see them. This shortcoming ultimately limits our ability to explore beyond the superficial tissues of the brain and to understand how the human brain works in its entirety. The long-term objective of this CAREER proposal, therefore, is to overcome this shortcoming by developing a new ultrasound imaging technology that can probe deep brain functional neural activities at a microscopic spatial resolution. Our technique leverages the power of deep learning and ultrafast ultrasound imaging to break the barrier of imaging speed for conventional super-resolution ultrasound. If successful, this transformative new technology will become a paradigm-shifting imaging tool that provides functional brain mapping at a much finer spatial resolution with a much deeper and wider territory than ever before. The unique capabilities of this new imaging technology will also open new doors for many under-explored opportunities in both basic neuroscience research and in many neurological disease applications. The goal of this CAREER proposal is to develop a new and transformative functional brain imaging technology that allows continuous, real-time monitoring of neural activities of the entire brain at a micron-scale through intact skull. Thrust 1 will focus on improving the temporal resolution of conventional super-resolution ultrasound imaging by developing deep learning-based super-resolution imaging techniques. Thrust 2 will address the computational challenges associated with ultrasound image reconstruction by developing a new ultrafast ultrasound system based on modern high-speed FPGAs. Thrust 3 will concentrate on developing phase aberration correction methods based on deep learning and novel 3D ultrafast imaging techniques to achieve robust intact skull imaging of the whole brain. In vivo mouse brain imaging studies will be conducted throughout the technical thrusts to evaluate and validate the performance of the newly developed super-resolution imaging techniques. If successful, the proposed work will result in a new, radiation-free, low-cost, and widely accessible functional brain imaging technique that will be the first to enable noninvasive probing of in vivo, deep-brain neural activities with high spatiotemporal resolution. In addition to the technical thrusts, this CAREER proposal also includes educational and outreach programs aimed to instill in the new generation of students the desire to improve the standard of healthcare such that all patients have access to state-of-the-art treatment, diagnostic, and screening options. By providing research opportunities, creating ultrasound engineering labs, developing innovative teaching strategies, and establishing new courses, this CAREER proposal will provide these students with the knowledge and tools necessary to create actionable changes within the opportunities presented.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大脑是人体中最复杂的器官。大脑如何工作仍然是人类最具挑战性的科学问题之一。几十年来,科学家和工程师不断开发和改进新的方法和技术,以促进我们对大脑的理解。在这些工具中,成像对于破译大脑至关重要,因为它允许我们直接可视化和研究复杂的脑组织及其组织和功能网络。然而,即使目前有大量的脑成像技术,我们探测大脑皮层以外的深层脑组织的能力仍然有限。这种限制在很大程度上可以归因于成像的物理学,这决定了我们可以看到的物体的大小和我们可以看到它们的深度之间不可避免的权衡。这一缺陷最终限制了我们探索大脑表层组织之外的能力,并限制了我们理解人类大脑整体工作方式的能力。因此,这项CAREER提案的长期目标是通过开发一种新的超声成像技术来克服这一缺点,该技术可以以微观空间分辨率探测深部脑功能神经活动。我们的技术利用深度学习和超快超声成像的力量,打破了传统超分辨率超声成像速度的障碍。如果成功的话,这项变革性的新技术将成为一种范式转变的成像工具,以比以往更精细的空间分辨率提供功能性大脑映射,其范围比以往任何时候都更深、更广。这种新成像技术的独特功能也将为基础神经科学研究和许多神经疾病应用中许多未开发的机会打开新的大门。该CAREER提案的目标是开发一种新的变革性功能性脑成像技术,该技术允许通过完整的颅骨以微米级连续实时监测整个大脑的神经活动。推力1将专注于通过开发基于深度学习的超分辨率成像技术来提高传统超分辨率超声成像的时间分辨率。推力2将通过开发基于现代高速FPGA的新型超快超声系统来解决与超声图像重建相关的计算挑战。Thrust 3将专注于开发基于深度学习和新型3D超快成像技术的相位畸变校正方法,以实现全脑的稳健完整颅骨成像。在整个技术推进过程中,将进行活体小鼠脑成像研究,以评估和验证新开发的超分辨率成像技术的性能。如果成功,这项工作将产生一种新的、无辐射、低成本和广泛使用的功能性脑成像技术,这将是第一个能够以高时空分辨率无创探测体内深部脑神经活动的技术。除了技术上的推动,这个职业建议还包括教育和推广计划,旨在向新一代学生灌输提高医疗保健标准的愿望,使所有患者都能获得最先进的治疗,诊断和筛查选择。通过提供研究机会,创建超声工程实验室,开发创新的教学策略,并建立新的课程,这个职业生涯的建议将为这些学生提供必要的知识和工具,创造可行的变化内所提出的机会。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contrast-Free Super-Resolution Power Doppler (CS-PD) Based on Deep Neural Networks.
  • DOI:
    10.1109/tuffc.2023.3304527
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    You, Qi;Lowerison, Matthew R.;Shin, Yirang;Chen, Xi;Sekaran, Nathiya Vaithiyalingam Chandra;Dong, Zhijie;Llano, Daniel Adolfo;Anastasio, Mark A.;Song, Pengfei
  • 通讯作者:
    Song, Pengfei
High-Level Synthesis Design of Scalable Ultrafast Ultrasound Beamformer With Single FPGA.
Localization Free Super-Resolution Microbubble Velocimetry Using a Long Short-Term Memory Neural Network.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pengfei Song其他文献

Ionically crosslinked core-shell particles for waterborne humidity-sensitive coatings
用于水性湿敏涂料的离子交联核壳颗粒
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yusheng Wang;Chen Li;Wenzhong Zhai;Yu-Feng He;Pengfei Song;Yubing Xiong;Rong-Min Wang
  • 通讯作者:
    Rong-Min Wang
Soybean protein isolate-based microgels bounding amino acid metal complexes for scavenging superoxide anion radicals
基于大豆分离蛋白的微凝胶结合氨基酸金属络合物清除超氧阴离子自由基
  • DOI:
    10.1007/s00289-020-03121-7
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Xuemei Li;Bin Wang;Yufeng He;Pengfei Song;Guifang Yan;Rongmin Wang
  • 通讯作者:
    Rongmin Wang
Grounding Awareness on Belief Bases
将意识扎根于信仰基础
  • DOI:
    10.1007/978-3-030-65840-3_11
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Lorini;Pengfei Song
  • 通讯作者:
    Pengfei Song
Anisotropic Nano-/Microparticles from Diversified Copolymers by Solvent-Mediated Self-Assembly
通过溶剂介导的自组装从多样化共聚物中制备各向异性纳米/微粒
  • DOI:
    10.1021/acs.langmuir.9b02126
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Bin Wang;Lingyun Jia;Fawei Wang;Yufeng He;Pengfei Song;Rongmin Wang
  • 通讯作者:
    Rongmin Wang
Reutilization of Discarded Biomass for Preparing Functional Polymer Materials
废弃生物质再利用制备功能高分子材料
  • DOI:
    10.1016/j.wasman.2017.04.025
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Jianfeng Wang;Wenzhen Qian;Yufeng He;Yubing Xiong;Pengfei Song;Rong-Min Wang
  • 通讯作者:
    Rong-Min Wang

Pengfei Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pengfei Song', 18)}}的其他基金

PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
  • 批准号:
    2329865
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻 SUPER WOMAN 5 (SPW5) 基因调控花器官发育的分子机制解析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
肌细胞生成素与Super-enhancer互作形成正反馈环路促进肌损伤修复的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
水稻SUPER WOMAN 3 (SPW3) 基因调控花器官发育的分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
水稻SUPER WOMAN 3(SPW3)基因调控花器官发育的分子机制研究
  • 批准号:
    32100287
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于质谱的Super SILAC结合膜富集技术解析镁离子相关蛋白调控网络在Ⅲ型前列腺炎中的作用机制研究
  • 批准号:
    22164007
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
Triptolide通过调控Super-enhancer抑制抗体产生改善抗体介导的移植肾排斥反应
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Super-enhancer驱动的LINC01468通过增强癌基因翻译促进鼻咽癌发生发展的机制研究
  • 批准号:
    2020JJ4838
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
水稻SUPER BRABCH 1基因调控穗发育的分子机制研究
  • 批准号:
    31971919
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Max-plus代数上的super本征问题
  • 批准号:
    11901486
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Super-lncRNA与super-enhancer的相互作用在乳腺癌发生发展中作用机制的研究
  • 批准号:
    81902680
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
  • 批准号:
    2237309
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Developing Algorithms for Object-Adaptive Super-Resolution in Biomedical Imaging
职业:开发生物医学成像中对象自适应超分辨率算法
  • 批准号:
    2239810
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Three-dimensional super-resolution light microscopy of thick, unprocessed biological samples
职业:厚的、未处理的生物样品的三维超分辨率光学显微镜
  • 批准号:
    2404769
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Mapping deep brain functions with super-resolution photoacoustic imaging
职业:通过超分辨率光声成像绘制大脑深部功能图
  • 批准号:
    2144788
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Optical Super-Resolution Nanothermometry via Stimulated Emission Depletion Imaging
职业:通过受激发射损耗成像进行光学超分辨率纳米测温
  • 批准号:
    2142140
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Dual-comb photoacoustic microscopy with super-resolution wavefront shaping
职业:具有超分辨率波前整形的双梳光声显微镜
  • 批准号:
    2048202
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Three-dimensional super-resolution light microscopy of thick, unprocessed biological samples
职业:厚的、未处理的生物样品的三维超分辨率光学显微镜
  • 批准号:
    2042563
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Development of Super-Resolution Scanning Probe Stimulated Raman Microscopy with Excellent Spatial Resolution
职业:开发具有出色空间分辨率的超分辨率扫描探针受激拉曼显微镜
  • 批准号:
    1847765
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Super-Resolution Label-Free Mid-Infrared Photothermal Imaging
职业:迈向超分辨率无标签中红外光热成像
  • 批准号:
    1846659
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Target-locked single molecule spectroscopy and super-resolution microscopy
职业:目标锁定单分子光谱和超分辨率显微镜
  • 批准号:
    1847899
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了