CAREER: A Unifying Stochastic Framework for Temporally Consistent Computer Vision Models
职业生涯:时间一致计算机视觉模型的统一随机框架
基本信息
- 批准号:2045963
- 负责人:
- 金额:$ 51.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sequential Monte Carlo methods are an effective mechanism to integrate observations over time in computer vision problems, especially in association with features generated by deep neural networks. However, it is still unclear how such networks can be interpreted as components of a stochastic inference system. This project will combine sequential Monte Carlo methods with neural networks to create a trainable stochastic framework for computer vision tasks. The developed framework will enable the design of autonomous and robotic systems that can interpret and interact with their environment, a critical component for the automation of tasks that must be performed in complex, unconstrained scenarios. These capabilities will be demonstrated through the development of novel agricultural robotic systems that generate accurate models of agricultural crops at varying levels of spatial and temporal granularity. With particular focus on under-represented populations, the project will provide research opportunities and hands-on training to graduate and undergraduate students on artificial intelligence topics and their applications to agricultural problems. It will also provide the students with foundational entrepreneurial skills that will allow them to identify problems of broad societal relevance that can be solved using machine learning and artificial intelligence methods.This research will create a stochastic framework that learns in an end-to-end manner how to leverage semantic information about objects of interest to assimilate spatial and temporal visual information and enforce temporal consistency in computer vision algorithms. Casting the multiple-object segmentation and tracking problem as a non-parametric pixel probability distribution estimation task will make it possible to devise uncertainty-aware models that learn how the appearance of objects varies over time given the context surrounding them. These research efforts will also introduce a new paradigm for the representation of motion models that enforce temporal consistency among video frames at the pixel level, obviating the need for object detection and localization techniques. Finally, these temporal association methods will substantially simplify the problem of recognizing and reconstructing complex objects in unstructured environments. By incorporating parameters of relevance to agricultural problems and extending the probabilistic models to satisfy domain-specific constraints, this project will devise novel techniques to extract semantic information and generate large-scale reconstructions of entire orchards at the granularity of individual leaves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
顺序蒙特卡罗方法是一种有效的机制,可以在计算机视觉问题中随着时间的推移整合观察结果,特别是与深度神经网络生成的特征相关联。然而,目前还不清楚如何将这种网络解释为随机推理系统的组成部分。 该项目将联合收割机序列蒙特卡罗方法与神经网络相结合,为计算机视觉任务创建一个可训练的随机框架。开发的框架将使自主和机器人系统的设计,可以解释和与他们的环境,一个关键的组成部分,必须在复杂的,不受约束的情况下执行的任务自动化。这些能力将通过开发新型农业机器人系统来展示,这些系统可以在不同的空间和时间粒度水平上生成农作物的精确模型。该项目特别关注代表性不足的人群,将为研究生和本科生提供人工智能主题及其在农业问题中的应用的研究机会和实践培训。它还将为学生提供基本的创业技能,使他们能够识别可以使用机器学习和人工智能方法解决的广泛社会相关性问题。如何利用感兴趣对象的语义信息来同化空间和时间视觉信息,并在计算机中实现时间一致性视觉算法将多对象分割和跟踪问题转换为非参数像素概率分布估计任务,将使设计不确定性感知模型成为可能,该模型可以在给定对象周围的上下文的情况下学习对象的外观如何随时间变化。这些研究工作还将引入一种新的模式,用于表示运动模型,该模型在像素级上执行视频帧之间的时间一致性,从而避免了对对象检测和定位技术的需要。最后,这些时间关联方法将大大简化在非结构化环境中识别和重建复杂对象的问题。通过纳入与农业问题相关的参数并扩展概率模型以满足特定领域的约束,这个项目将设计新的技术来提取语义信息,并生成大量的,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry Medeiros其他文献
A fast GPU-based approach to branchless distance-driven projection and back-projection in cone beam CT
锥束 CT 中基于 GPU 的快速无分支距离驱动投影和反投影方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Daniel Schlifske;Henry Medeiros - 通讯作者:
Henry Medeiros
A robotic vision system to measure tree traits
用于测量树木特征的机器人视觉系统
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Tabb;Henry Medeiros - 通讯作者:
Henry Medeiros
Detecting Invasive Insects with Unmanned Aerial Vehicles
用无人机检测入侵昆虫
- DOI:
10.1109/icra.2019.8794116 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
B. Stumph;Miguel Hernandez Virto;Henry Medeiros;A. Tabb;S. Wolford;Kevin Rice;T. Leskey - 通讯作者:
T. Leskey
Multi-camera calibration with pattern rigs, including for non-overlapping cameras: CALICO
使用图案装备进行多相机校准,包括非重叠相机:CALICO
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Tabb;Henry Medeiros;Mitchell J. Feldmann;T. T. Santos - 通讯作者:
T. T. Santos
Detecting invasive insects using Uncrewed Aerial Vehicles and Variational AutoEncoders
使用无人机和变分自动编码器检测入侵昆虫
- DOI:
10.1016/j.compag.2025.110362 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:8.900
- 作者:
Henry Medeiros;Amy Tabb;Scott Stewart;Tracy Leskey - 通讯作者:
Tracy Leskey
Henry Medeiros的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry Medeiros', 18)}}的其他基金
CAREER: A Unifying Stochastic Framework for Temporally Consistent Computer Vision Models
职业生涯:时间一致计算机视觉模型的统一随机框架
- 批准号:
2224591 - 财政年份:2022
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
相似海外基金
UNIfying Grid-FOllowing And Grid-foRMing Control In Inverter-based Resources (UNIFORM)
统一基于逆变器的资源中的网格跟随和网格形成控制(UNIFORM)
- 批准号:
EP/Y001575/1 - 财政年份:2024
- 资助金额:
$ 51.5万 - 项目类别:
Research Grant
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
- 批准号:
24K20830 - 财政年份:2024
- 资助金额:
$ 51.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Dual Reinforcement Learning: A Unifying Framework with Guarantees
职业:双重强化学习:有保证的统一框架
- 批准号:
2340651 - 财政年份:2024
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
A unifying model for ion exchange membranes – towards a low carbon future
离子交换膜的统一模型 — 迈向低碳未来
- 批准号:
DP240101405 - 财政年份:2024
- 资助金额:
$ 51.5万 - 项目类别:
Discovery Projects
CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems
职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模
- 批准号:
2239328 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
Unifying Pre-training and Multilingual Semantic Representation Learning for Low-resource Neural Machine Translation
统一预训练和多语言语义表示学习以实现低资源神经机器翻译
- 批准号:
22KJ1843 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Unifying discrete and continuous methods in quantum information theory
统一量子信息论中的离散和连续方法
- 批准号:
FT230100571 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
ARC Future Fellowships
"Circular Transparency Platform", unifying the apparel value chain: From Thread to Second Life+. Enabling stakeholders from manufacturing and retail, to engage consumers with visual, incentivised Environmental, Social and Circular product experiences
“循环透明平台”,统一服装价值链:从Thread到Second Life。
- 批准号:
10059608 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Collaborative R&D
Unifying models of information processing across machine learning, artificial intelligence and neuroscience
统一机器学习、人工智能和神经科学的信息处理模型
- 批准号:
EP/X011151/1 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Fellowship
CAREER: Unifying Neuroscience and Biomechanics Paradigms for Modeling Brain and Muscle Responses to Mechanical Impacts
职业:统一神经科学和生物力学范式,模拟大脑和肌肉对机械冲击的反应
- 批准号:
2239110 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant