CAREER: Understanding degradation mechanisms in sustainable energy electrochemical systems using advanced characterization approaches

职业:使用先进的表征方法了解可持续能源电化学系统的降解机制

基本信息

  • 批准号:
    2046060
  • 负责人:
  • 金额:
    $ 54.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Near zero-emission energy systems, such as fuel cells, electrolyzers, and batteries hold immense promise for production and storage of clean and renewable energy, but challenges such as high cost, unsatisfactory efficiency, and low durability remain. This NSF CAREER project presents a comprehensive integrated research and education program that focuses on application of cutting-edge microscopy methods to understand degradation processes in fuel cell electrodes, applicable to other systems, such as batteries and electrolyzers. The project will use novel microscopy characterization and quantification methods to close the gap in understanding degradation mechanisms that occur within the membrane electrode assembly including the electrocatalyst, the catalyst support, and the electrolyte membrane. The knowledge generated in this project will contribute towards the rational design of electrodes with greater durability through the understanding of key factors that contribute to electrode degradation. The educational objective of the project is to attract younger diverse generations to both STEM and clean energy. The investigator will harness the motivation of the next generation to improve prospects for clean energy by integrating the research and educational aspects of the project with the use of virtual reality tools. The investigator plans to develop instructive and stimulating “I loVR Nano” and “I loVR Clean Energy” virtual reality modules, where materials science, clean energy, and microscopy topics will be presented. The investigator has also planned an “Engineering Entrepreneurs—Under the Microscope” program to offer undergraduate and graduate engineering students entrepreneurship and research training to prepare them as future leaders in the clean energy and other sectors.This fundamental engineering science research project will use sophisticated microscopy characterization and quantification methods to close the knowledge gap in understanding of the following scientific questions: (1) What (undiscovered) mechanisms/changes on the nano- and micro-level occur during electrode degradation and how do these changes affect performance? (2) Can the effect of each degradation mechanism be distinguished and linked to individual components in the electrodes? (3) How do the properties of electrode components and their distribution on a nano- and micro-scale affect degradation? The project has the potential to make a significant contribution to science by establishing novel approaches for testing and 2D/3D microscopy characterization of zero-emission electrochemical systems, and hence provide solutions for improving performance and durability. The technical objectives of this project are: 1) Develop and verify a method to directly observe the degradation processes in actual and model electrochemical systems on a nanometer scale in a novel Micro EChem Cell for Identical Location (MECC-IL); 2) Establish a suite of advanced characterization approaches involving 2D/3D multi-scale imaging and spectroscopy, and parameter quantification to understand degradation mechanisms on a nano- and micro-scale. Define a unique, comprehensive matrix of structural and compositional parameters to correlate to MECC-IL and ex-situ testing; 3) Establish multi-variate correlations between the derived matrix of parameters and the MECC-IL validated with ex-situ degradation testing. The project will yield new fundamental knowledge of degradation mechanisms for electrochemical systems through convergence of correlations and modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
接近零发射能源系统(例如燃料电池,电解器和电池)对清洁和可再生能源的生产和存储持有巨大的希望,但挑战(例如高成本,不令人满意的效率和较低的耐用性)仍然存在。该NSF职业项目提出了一项全面的综合研究和教育计划,该计划的重点是应用尖端显微镜方法来了解适用于其他系统(例如电池和电解机)的燃料电池电极中的降解过程。该项目将使用新颖的显微镜表征和定量方法来缩小膜电极组装中发生的降解机制的差距,包括电催化剂,催化剂支持和电解质膜。该项目中产生的知识将通过了解导致电极降解的关键因素来有助于具有更大耐用性的电子设计。该项目的教育目标是吸引年轻的潜水员世代相传的茎和清洁能源。研究人员将利用下一代的动机,通过将项目的研究和教育方面与使用虚拟现实工具相结合,以改善清洁能源的前景。研究人员计划开发具有启发性的“我喜欢Nano”和“ I Lovr Clean Energy”虚拟现实模块,其中将介绍材料科学,清洁能源和显微镜主题。研究人员还计划了一个“工程企业家 - 在显微镜下”计划,以提供本科和研究生工程专业的学生企业家和研究培训,以使其作为清洁能源和其他领域的未来领导者做好准备。这项基本工程学科学研究项目将使用复杂的显微镜象征和量化方法来关闭知识差异,以下是在理解知识方面的问题(1.1(1)(1(1)(1(1)(1(1)(1(1)(1(1)(1(1)(1)(1(1))(1(1)(1(1))(1)(1(1))(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)。电极降解过程中发生的纳米和微级别发生,这些变化如何影响性能? (2)是否可以区分每个降解机制的效果并将其与电极中的单个组件联系起来? (3)电极成分的性能及其在纳米和微尺度上的分布如何影响降解?该项目有可能通过建立对零发射电化学系统的测试和2D/3D显微镜表征的新方法来为科学做出重大贡献,从而提供了改善性能和耐用性的解决方案。该项目的技术目标是:1)开发和验证一种方法,以直接在新型的微观Echem细胞中直接观察实际和模型电化学系统中的降解过程,以适用于相同位置(MECC-IL); 2)建立涉及2D/3D多尺度成像和光谱的高级表征方法以及参数量化,以了解纳米和微尺度上的降解机制。定义结构和复合参数的独特,全面的矩阵,以与MECC-IL和前静脉测试相关; 3)在参数的派生矩阵与通过前拟南芥降解测试验证的MECC-IL之间建立多变量的相关性。该项目将通过相关性和建模的融合为电化学系统提供新的基本知识。该奖项反映了NSF的法定任务,并通过使用该基金会的智力优点和更广泛的影响来审查标准,被视为通过评估来获得的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of Semi-Automatic Compositional and Microstructural Analysis of Energy Dispersive Spectroscopy (EDS) Maps via a Python-Based Image and Data Processing Framework for Fuel Cell Applications
通过基于 Python 的燃料电池应用图像和数据处理框架评估能量色散光谱 (EDS) 图的半自动成分和微观结构分析
  • DOI:
    10.1149/1945-7111/acd584
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Batool, Mariah;Godoy, Andres O.;Birnbach, Martin;Dekel, Dario R.;Jankovic, Jasna
  • 通讯作者:
    Jankovic, Jasna
Quantifying key parameters to provide better understating of microstructural changes in polymer electrolyte membrane fuel cells during degradation: A startup/shutdown case study
  • DOI:
    10.1016/j.jpowsour.2023.232807
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    A. Soleymani;L. Bonville;Chunmei Wang;Stephanie Schaefer;James Waldecker;J. Jankovic
  • 通讯作者:
    A. Soleymani;L. Bonville;Chunmei Wang;Stephanie Schaefer;James Waldecker;J. Jankovic
Improved Carbon Corrosion and Platinum Dissolution Durability in Automotive Fuel Cell Startup and Shutdown Operation
  • DOI:
    10.1149/1945-7111/abe6ea
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Chunmei Wang;M. Ricketts;A. Soleymani;J. Jankovic;James Waldecker;Jixin Chen;Chunchuan Xu
  • 通讯作者:
    Chunmei Wang;M. Ricketts;A. Soleymani;J. Jankovic;James Waldecker;Jixin Chen;Chunchuan Xu
An Epoxy‐Free Sample Preparation Approach to Enable Imaging of Ionomer and Carbon in Polymer Electrolyte Membrane Fuel Cells
一种能够对聚合物电解质膜燃料电池中的离聚物和碳进行成像的无环氧样品制备方法
  • DOI:
    10.1002/adfm.202209733
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Soleymani, Amir Peyman;Reid, Marcia;Jankovic, Jasna
  • 通讯作者:
    Jankovic, Jasna
Deep learning for the automation of particle analysis in catalyst layers for polymer electrolyte fuel cells
用于聚合物电解质燃料电池催化剂层颗粒分析自动化的深度学习
  • DOI:
    10.1039/d1nr06435e
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Colliard-Granero, André;Batool, Mariah;Jankovic, Jasna;Jitsev, Jenia;Eikerling, Michael H.;Malek, Kourosh;Eslamibidgoli, Mohammad J.
  • 通讯作者:
    Eslamibidgoli, Mohammad J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jasna Jankovic其他文献

Shelf-life of ball-milled catalyst inks for the fabrication of fuel cell electrodes
  • DOI:
    10.1016/j.ijhydene.2024.10.273
  • 发表时间:
    2024-12-03
  • 期刊:
  • 影响因子:
  • 作者:
    Carlos M. Baez-Cotto;Jayson Foster;Andres O. Godoy;Tim Van Cleve;Erica Young;Svitlana Pylypenko;Jasna Jankovic;Michael Ulsh;Scott Mauger
  • 通讯作者:
    Scott Mauger
Understanding the Effects of Heat Treatment Temperature and Atmosphere on Platinum Nanoparticle Sintering Processes on Different Engineered Catalyst Supports (ECS) for Fuel Cell Applications
了解热处理温度和气氛对燃料电池应用中不同工程催化剂载体 (ECS) 上铂纳米颗粒烧结过程的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    A. Godoy;Jayson G. Foster;M. Dicome;Geoff Mccool;B. Zulevi;Michele Ostraat;S. Pylypenko;Jasna Jankovic
  • 通讯作者:
    Jasna Jankovic

Jasna Jankovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jasna Jankovic', 18)}}的其他基金

PFI-TT: Development and Commercialization of a Novel Tubular Proton Exchange Fuel Cell
PFI-TT:新型管式质子交换燃料电池的开发和商业化
  • 批准号:
    2213894
  • 财政年份:
    2022
  • 资助金额:
    $ 54.79万
  • 项目类别:
    Standard Grant
I-Corps: A Novel Tubular Proton Exchange Fuel Cell Design
I-Corps:新型管式质子交换燃料电池设计
  • 批准号:
    2229712
  • 财政年份:
    2022
  • 资助金额:
    $ 54.79万
  • 项目类别:
    Standard Grant

相似国自然基金

NFYC1/ABF4-BAM3模块调控枳淀粉降解响应干旱胁迫的分子机理解析
  • 批准号:
    32302475
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
AcBAM3.3应答特殊温度诱导采后猕猴桃果实淀粉降解的机理解析
  • 批准号:
    32272779
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
AcBAM3.3应答特殊温度诱导采后猕猴桃果实淀粉降解的机理解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
完全降解萘的大肠杆菌工程菌的构建及其代谢机理解析
  • 批准号:
    31901069
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
玉米ABA降解基因ZmABA8ox1b的功能鉴定及其调控机理解析
  • 批准号:
    31701441
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

多波長観測による激変星の降着とアウトフローの理解
通过多波长观测了解灾变恒星的吸积和流出
  • 批准号:
    24KJ2225
  • 财政年份:
    2024
  • 资助金额:
    $ 54.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
複数流域の長期地下水位変動データを用いた網羅的降雨応答解析による地下水理特性検討
利用多个流域的长期地下水位波动数据,通过综合降雨响应分析来检查地下水特征
  • 批准号:
    24K17359
  • 财政年份:
    2024
  • 资助金额:
    $ 54.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding targeted protein degradation for design of optimized therapeutic strategies
了解靶向蛋白质降解以设计优化的治疗策略
  • 批准号:
    BB/X007499/1
  • 财政年份:
    2023
  • 资助金额:
    $ 54.79万
  • 项目类别:
    Research Grant
Understanding GABAA receptor protein folding and misfolding
了解 GABAA 受体蛋白折叠和错误折叠
  • 批准号:
    10744869
  • 财政年份:
    2023
  • 资助金额:
    $ 54.79万
  • 项目类别:
Understanding and Engineering Chemically Activated Ubiquitin Ligases
了解和设计化学激活的泛素连接
  • 批准号:
    10713454
  • 财政年份:
    2023
  • 资助金额:
    $ 54.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了