CAREER: Optofluidic Solar Indoor Lighting Towards Sustainable Buildings

事业:光流控太阳能室内照明迈向可持续建筑

基本信息

  • 批准号:
    2046134
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

According to the U.S. Energy Information Administration, the building sector accounts for more than 70% of all U.S. electricity use and 40% of total U.S. energy consumption. Buildings are also responsible for over one-third of U.S. greenhouse gas emissions, which is more than any other sector of the economy. This project addresses an important national and societal need for green and sustainable buildings. The research explores a novel optofluidic approach that can make full use of rooftop solar energy not only for interior illumination of buildings with active control of lighting power, but also for other indoor solar activities such as indoor farming and photovoltaic generation using excess sunlight. The research outcomes will truly offer a new paradigm in solar energy solutions in the pursuit of buildings that are energy-efficient and environmentally friendly. The innovations of the proposed technology include compact and lightweight solar lighting systems, constant illumination at a comfortable level, electricity reduction in buildings, a high-quality indoor environment, and excess solar energy for other solar indoor activities. The project requires interdisciplinary research and training on issues ranging from electrical engineering and surface science, all the way to optics and energy applications. Graduate students will gain first-hand experience from this interdisciplinary research and be well prepared to be future leaders. Through the collaborations with SDSU’s educational programs, outreach activities will be also conducted with the goal of promoting participation of K-12 and community college students from underrepresented groups and women in higher education in STEM disciplines. The objective of this project is to develop an optofluidic solar indoor lighting (OFSIL) system that can make full use of rooftop solar energy not only for interior illumination of buildings with active control of lighting power, but for other indoor solar activities such as indoor farming and photovoltaic generation. The PI recently developed electrowetting-driven liquid prisms that enabled high-performance beam steering without any mechanical moving parts. In this project, the concept of the tunable liquid prism is used as a low-cost, lightweight, and precise beam steering mean to realize smart solar indoor lighting. The project firstly focuses on fundamental studies of nanomaterials and optofluidic phenomena to achieve high-performance solar beam steering. Secondly, three-dimensional (3D) numerical simulation studies are implemented for the concept demonstration of active lighting control and design optimization of the large-scale lighting system. Lastly, an arrayed form of optofluidic solar lighting systems is developed to demonstrate the feasibility to capture sunlight outside and guide it to interiors through optical fibers for building’s illumination. The developed research outputs utilize natural sunlight for indoor lighting to significantly reduce electricity use in buildings as well as provide healthy and productive indoor environment under comfortable sunlight illumination as a move towards green and sustainable buildings. The technology developed in this research can be further used for other underground structures (e.g. subways, tunnels, basements, shelters, etc.) where natural sunlight can be enjoyed for indoor lighting and even make possible the cultivation of plants in deep underground structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
根据美国能源信息署的数据,建筑业占美国所有电力使用量的70%以上,占美国能源消耗总量的40%。建筑物还占美国温室气体排放量的三分之一以上,超过任何其他经济部门。该项目解决了国家和社会对绿色和可持续建筑的重要需求。该研究探索了一种新的光流体方法,可以充分利用屋顶太阳能,不仅用于建筑物的内部照明,还可以用于其他室内太阳能活动,如室内农业和使用过量阳光的光伏发电。研究成果将真正为太阳能解决方案提供新的范例,以追求节能和环保的建筑。所提出的技术的创新包括紧凑和轻便的太阳能照明系统,舒适水平的恒定照明,建筑物的电力减少,高质量的室内环境,以及用于其他太阳能室内活动的多余太阳能。该项目需要跨学科的研究和培训,涉及从电气工程和表面科学到光学和能源应用等问题。研究生将从这一跨学科的研究中获得第一手经验,并为成为未来的领导者做好充分准备。通过与SDSU的教育计划合作,还将开展外展活动,以促进K-12和社区学院学生从代表性不足的群体和妇女参与STEM学科的高等教育。该项目的目标是开发一种光流体太阳能室内照明系统(OFSIL),该系统可以充分利用屋顶太阳能,不仅用于建筑物的内部照明,还可以主动控制照明功率,还可以用于其他室内太阳能活动,例如室内农业和光伏发电。PI最近开发了电润湿驱动的液体棱镜,可以在没有任何机械移动部件的情况下实现高性能光束转向。在这个项目中,可调谐液体棱镜的概念被用作一种低成本,重量轻,精确的光束转向手段,以实现智能太阳能室内照明。该项目首先侧重于纳米材料和光流体现象的基础研究,以实现高性能的太阳光束转向。其次,进行三维数值模拟研究,进行主动照明控制的概念论证和大型照明系统的设计优化。最后,开发了一种阵列形式的光流体太阳能照明系统,以证明通过光纤捕获外部阳光并将其引导到内部用于建筑物照明的可行性。已开发的研究成果利用自然阳光进行室内照明,以显著减少建筑物的用电量,并在舒适的阳光照明下提供健康和富有成效的室内环境,以迈向绿色和可持续建筑。本研究开发的技术可进一步用于其他地下结构(如地铁、隧道、地下室、避难所等)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An arrayed optofluidic system for three-dimensional (3D) focal control via electrowetting
  • DOI:
    10.1364/oe.489508
  • 发表时间:
    2023-05-22
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Lee,Yeonwoo;Lee,Cheng-Hsun;Park,Sung-Yong
  • 通讯作者:
    Park,Sung-Yong
Lab-on-a-Smartphone (LOS): A smartphone-integrated, optoelectrowetting-driven environmental sensor for on-site detection of water quality
智能手机实验室 (LOS):集成智能手机、光电润湿驱动的环境传感器,用于水质现场检测
  • DOI:
    10.1109/sensors52175.2022.9967199
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thio, Si Kuan;Park, Sung-Yong
  • 通讯作者:
    Park, Sung-Yong
A smartphone integrated paper (SIP)-based platform for rapid and on-site screening of urinary tract infections
基于智能手机集成纸质 (SIP) 的平台,用于快速现场筛查尿路感染
  • DOI:
    10.1016/j.snb.2023.133498
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Janev, Athul;Kang, John S.;Park, Sung-Yong
  • 通讯作者:
    Park, Sung-Yong
3D spatial focal control by arrayed optofluidic prisms
通过阵列光流控棱镜进行 3D 空间焦点控制
Lab on a smartphone (LOS): A smartphone-integrated, plasmonic-enhanced optoelectrowetting (OEW) platform for on-chip water quality monitoring through LAMP assays
  • DOI:
    10.1016/j.snb.2022.131543
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Si Kuan Thio;Sungwoo Bae;Sung-Yong Park
  • 通讯作者:
    Si Kuan Thio;Sungwoo Bae;Sung-Yong Park
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sung-Yong Park其他文献

Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber
  • DOI:
    10.1186/1748-717x-8-182
  • 发表时间:
    2013-07-17
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Dong Wook Kim;Weon Kuu Chung;Jungwook Shin;Young Kyung Lim;Dongho Shin;Se Byeong Lee;Myongguen Yoon;Sung-Yong Park;Dong Oh Shin;Jung Keun Cho
  • 通讯作者:
    Jung Keun Cho

Sung-Yong Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of Optofluidic Resonators for Filoviral Detection
用于丝状病毒检测的光流控谐振器的开发
  • 批准号:
    10506889
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Hybrid Graphene-Metallic Optofluidic Nanostructures for the Point-of-Care Detection of Illicit Drugs and Biological Agents
用于非法药物和生物制剂即时检测的混合石墨烯-金属光流控纳米结构
  • 批准号:
    RGPIN-2019-04292
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Optofluidic Resonators for Filoviral Detection
用于丝状病毒检测的光流控谐振器的开发
  • 批准号:
    10792319
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Development of Optofluidic Resonators for Filoviral Detection
用于丝状病毒检测的光流控谐振器的开发
  • 批准号:
    10668494
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Understand and Detect Sepsis: Pathogen Isolation, Biochemistry Assay, and Optofluidic Sensing
了解和检测脓毒症:病原体分离、生物化学检测和光流控传感
  • 批准号:
    10458723
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Understand and Detect Sepsis: Pathogen Isolation, Biochemistry Assay, and Optofluidic Sensing
了解和检测脓毒症:病原体分离、生物化学检测和光流控传感
  • 批准号:
    10671479
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Title: R35GM142763: Understand and Detect Sepsis: Pathogen Isolation, Biochemistry Assay, and Optofluidic Sensing
标题:R35GM142763:了解和检测脓毒症:病原体分离、生物化学测定和光流传感
  • 批准号:
    10794840
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Understand and Detect Sepsis: Pathogen Isolation, Biochemistry Assay, and Optofluidic Sensing
了解和检测脓毒症:病原体分离、生物化学检测和光流控传感
  • 批准号:
    10746704
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Understand and Detect Sepsis: Pathogen Isolation, Biochemistry Assay, and Optofluidic Sensing
了解和检测脓毒症:病原体分离、生物化学检测和光流控传感
  • 批准号:
    10275269
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Hybrid Graphene-Metallic Optofluidic Nanostructures for the Point-of-Care Detection of Illicit Drugs and Biological Agents
用于非法药物和生物制剂即时检测的混合石墨烯-金属光流控纳米结构
  • 批准号:
    RGPIN-2019-04292
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了