CAREER: Self-Organization of Micro-Particles with Light and Sound
职业:利用光和声音自组织微粒
基本信息
- 批准号:2046261
- 负责人:
- 金额:$ 54.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical Abstract:Scientists have long known that one can dramatically alter the properties of a material by patterning it on a microscopic scale. Doing so, however, presents a major challenge: this patterning must happen at a microscopic scale but over large distances, preventing the use of direct techniques like 3D printing. There is an alternative: biological organisms are able to produce complex structure using the self-organization of basic chemical components with tuned interactions. Doing something similar with manmade materials requires a better understanding of the self-organization process, as well as practical methods for engineering forces among microscopic particles. This project explores an effect known as "optical binding", which induces complex forces between clusters of particles using light. The research team is developing new experimental and numerical tools to explore the range of active and passive structures that can be generated using this force. In addition, the researchers are conducting proof of principle research on "acoustic binding", a similar effect which uses sound instead of light. The long term aim of both efforts is to exploit these novel tools to better understand self-organization in general, as well as to enable a new generation of manmade materials for industrial, defense, and consumer applications. The project also includes efforts to increase participation of underrepresented groups in STEM fields at the middle school through graduate level through integrated education and research opportunities. In particular, the researchers are developing a new course on experimental physics for Middle and High school students in collaboration with the Bobcat Summer STEM Academy at UC Merced; rather than relying on ‘canned’ physics experiments, this course exposes students to the complete lifecycle of a scientific experiment, from design through execution and data analysis.Technical Abstract:Understanding self-organization is of interest for many fields of science, including biology, chemistry, physics, and engineering. Colloidal systems have emerged as a useful experimental platform to study this phenomenon, as various techniques exist to modify the forces between colloidal particles. Despite this, there are limits to the type of forces than can be produced: they are typically short range and can only be modified during the synthesis stage. This project is studying an effect known as optical binding, which uses light to induce multi-particle interactions which are long range, directional, pairwise non-conservative, and can be altered in real time. Additionally, the project includes proof-of-principle research on acoustic binding, which produces similar forces in an athermal and inertial regime. The research team is using novel numerical and experimental methods to study both types of force in detail and exploring how these forces modify the self-organization of many-particle systems. This provides insights into how feats of self-organization are performed in the natural world, and how they could be exploited to create new manmade materials with complex microstructure. In addition to its research aims, this project also includes integrated outreach efforts to increase participation of underrepresented groups in STEM at the middle school through graduate level through research opportunities and summer programs for students and their teachers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:科学家们早就知道,人们可以通过在微观尺度上对材料进行图案化来显着改变材料的特性。 然而,这样做带来了一个重大挑战:这种图案必须在微观尺度上发生,但距离很远,无法使用3D打印等直接技术。 还有一个替代方案:生物有机体能够利用基本化学成分的自组织和调谐的相互作用产生复杂的结构。 对人造材料做类似的事情需要更好地理解自组织过程,以及在微观粒子中工程力的实用方法。 这个项目探索了一种被称为“光学结合”的效应,它利用光在粒子簇之间产生复杂的力。 研究小组正在开发新的实验和数值工具,以探索使用这种力可以产生的主动和被动结构的范围。 此外,研究人员正在对“声学绑定”进行原理验证研究,这是一种使用声音而不是光的类似效果。 这两项工作的长期目标是利用这些新工具来更好地理解自组织,并使新一代人造材料能够用于工业,国防和消费应用。 该项目还包括通过综合教育和研究机会,努力增加在中学到研究生阶段STEM领域代表性不足的群体的参与。 特别是,研究人员正在与加州大学默塞德的山猫夏季STEM学院合作,为初中和高中学生开发一门新的实验物理课程;这门课程不依赖于“罐头”物理实验,而是让学生了解科学实验的整个生命周期,从设计到执行和数据分析。技术摘要:理解自组织对于许多科学领域都很有意义,包括生物学、化学、物理学和工程学。 胶体系统已经成为研究这种现象的一个有用的实验平台,因为存在各种技术来改变胶体颗粒之间的力。 尽管如此,可以产生的力的类型是有限的:它们通常是短程的,并且只能在合成阶段进行修改。 该项目正在研究一种被称为光学结合的效应,它利用光诱导多粒子相互作用,这种相互作用是长程的、定向的、成对的非保守的,并且可以在真实的时间内改变。 此外,该项目还包括对声学结合的原理验证研究,这种结合在无热和惯性状态下产生类似的力。 研究小组正在使用新的数值和实验方法来详细研究这两种类型的力,并探索这些力如何改变多粒子系统的自组织。 这提供了关于自组织的壮举如何在自然界中进行的见解,以及如何利用它们来创造具有复杂微观结构的新人造材料。 除了研究目的之外,该项目还包括综合推广工作,通过研究机会和学生及其教师的暑期项目,提高中学到研究生阶段STEM中代表性不足的群体的参与度。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of acoustically bound particles
- DOI:10.1103/physrevresearch.5.013051
- 发表时间:2021-11
- 期刊:
- 影响因子:4.2
- 作者:Nicholas St. Clair;D. Davenport;A. Kim;D. Kleckner
- 通讯作者:Nicholas St. Clair;D. Davenport;A. Kim;D. Kleckner
Formation of colloidal chains and driven clusters with optical binding
通过光学结合形成胶体链和驱动簇
- DOI:10.1039/d2sm00393g
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Davenport, Dominique J.;Kleckner, Dustin
- 通讯作者:Kleckner, Dustin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dustin Kleckner其他文献
Tangled loops and knots
纠结的环和结
- DOI:
10.1038/nmat3896 - 发表时间:
2014-02-20 - 期刊:
- 影响因子:38.500
- 作者:
William T. M. Irvine;Dustin Kleckner - 通讯作者:
Dustin Kleckner
High-speed two-color scanning volumetric laser-induced fluorescence
- DOI:
10.1007/s00348-024-03831-y - 发表时间:
2024-06-21 - 期刊:
- 影响因子:2.500
- 作者:
Diego Tapia Silva;Cole J. Cooper;Tracy L. Mandel;Shilpa Khatri;Dustin Kleckner - 通讯作者:
Dustin Kleckner
Dustin Kleckner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dustin Kleckner', 18)}}的其他基金
Getting to the Core of Vortex Mechanics: A Hybrid Experimental and Numerical Study of Twist, Shear, and Wall Interactions
深入涡旋力学的核心:扭转、剪切和壁相互作用的混合实验和数值研究
- 批准号:
2330349 - 财政年份:2023
- 资助金额:
$ 54.67万 - 项目类别:
Standard Grant
相似国自然基金
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
- 批准号:81501521
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
- 批准号:11301190
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
- 批准号:11126152
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
- 批准号:81001041
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
- 批准号:31070711
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Self-organization and shape change in elastic active matter
职业:弹性活性物质的自组织和形状变化
- 批准号:
2340632 - 财政年份:2024
- 资助金额:
$ 54.67万 - 项目类别:
Continuing Grant
CAREER: Accelerating natural self-organization and restoring coastal ecosystem services with reef-mimicking substrate arrays
职业:利用模仿珊瑚礁的基质阵列加速自然自组织并恢复沿海生态系统服务
- 批准号:
1652628 - 财政年份:2017
- 资助金额:
$ 54.67万 - 项目类别:
Continuing Grant
CAREER: Physical Aspects of Spindle Self-Organization
职业:主轴自组织的物理方面
- 批准号:
0847188 - 财政年份:2009
- 资助金额:
$ 54.67万 - 项目类别:
Standard Grant
CAREER: Self-organization mechanisms in Myxococcus xanthus swarms
职业:黄色粘球菌群的自组织机制
- 批准号:
0845919 - 财政年份:2009
- 资助金额:
$ 54.67万 - 项目类别:
Continuing Grant
Analysis of the process of self-organization of social competence and career development of IT engineers
IT工程师社会能力自组织过程与职业发展分析
- 批准号:
20530460 - 财政年份:2008
- 资助金额:
$ 54.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Self-Organization Services and Application Support Constructs for Sensor Networks
职业:传感器网络的自组织服务和应用支持结构
- 批准号:
0448082 - 财政年份:2005
- 资助金额:
$ 54.67万 - 项目类别:
Continuing Grant
CAREER: Cooperative Communication Systems: Resource Allocation, Self-Organization, and Synchronization
职业:协作通信系统:资源分配、自组织和同步
- 批准号:
0447743 - 财政年份:2005
- 资助金额:
$ 54.67万 - 项目类别:
Continuing Grant
CAREER: Global Self-Organization of all Known Proteins - Toward a Complete Map of the Protein Space
职业:所有已知蛋白质的全局自组织 - 绘制蛋白质空间的完整地图
- 批准号:
0133311 - 财政年份:2002
- 资助金额:
$ 54.67万 - 项目类别:
Continuing Grant
CAREER: Ordered Nanoporous Semiconductors and Metals Synthesized by Combining Zintl Ion Chemistry with Inorganic/Organic Self-Organization
职业:Zintl 离子化学与无机/有机自组织相结合合成有序纳米多孔半导体和金属
- 批准号:
9985259 - 财政年份:2000
- 资助金额:
$ 54.67万 - 项目类别:
Continuing Grant
Career: Self-Organization of Amphiphilic Block Copolymers for the Preparation of Highly Ordered Materials: A Research and Education Program
职业:用于制备高度有序材料的两亲性嵌段共聚物的自组织:研究和教育计划
- 批准号:
9875848 - 财政年份:1999
- 资助金额:
$ 54.67万 - 项目类别:
Continuing Grant