CAREER: Optimized Sensing and Recovery for Computational Imaging
职业:优化计算成像的传感和恢复
基本信息
- 批准号:2046293
- 负责人:
- 金额:$ 53.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cameras have evolved tremendously over the past few decades as they have become compact and widely available in mobile devices. Nevertheless, vast opportunities for improvements still exist, especially as the community moves beyond consumer photography and start building cameras for sensing and understanding new environments under strict constraints. These constraints can arise because of physical requirements on the size, shape, or weight of the components, time required to capture and process the data, or cost and energy thresholds for the entire system. The focus of this research is to develop novel methods to sense and process visual information while taking into account the constraints and requirements on data, sensors, algorithms, and tasks in the real world. A successful outcome of the research will benefit diverse applications spanning consumer photography, machine vision and automation, and scientific/medical imaging. Training of a diverse group of undergraduate and graduate students through educational courses and research experience is an integral part of this project. The education and outreach component of this project involves dissemination of computational imaging research to K-12 students and teachers through annual research days on campus, as well as to the general public by collaborating with a museum of photography. Computational imaging offers a general framework to co-design sensing hardware and computational software to build novel and unconventional cameras. This research will address a number of fundamental theoretical and algorithmic questions related to optimized sensing, representation, and recovery for computational imaging. The research is organized into three inter-related thrusts: (1) Optimize and expand the space of measurements that computational imaging systems can realistically capture using programmable optics. (2) Learn sensing, data representation, and recovery algorithms in an end-to-end manner. (3) Develop efficient algorithms for computational imaging systems beyond linear and shift-invariant models. The insights gained from this research will help us understand some of the fundamental limits that exist in realistic computational imaging systems and provide tools to optimize them within the given constraints. Models and algorithms developed in this research will be validated with real imaging experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,相机已经发生了巨大的变化,因为它们已经变得紧凑并且广泛用于移动的设备中。尽管如此,仍然存在巨大的改进机会,特别是随着社区超越消费者摄影,并开始在严格的限制下构建用于感知和理解新环境的相机。这些限制可能是由于对组件的大小、形状或重量的物理要求,捕获和处理数据所需的时间,或整个系统的成本和能量阈值而产生的。本研究的重点是开发新的方法来感知和处理视觉信息,同时考虑到真实的世界中的数据,传感器,算法和任务的约束和要求。该研究的成功成果将使消费者摄影、机器视觉和自动化以及科学/医学成像等多种应用受益。通过教育课程和研究经验培训不同群体的本科生和研究生是该项目的一个组成部分。该项目的教育和推广部分涉及通过校园年度研究日向K-12学生和教师传播计算成像研究,以及通过与摄影博物馆合作向公众传播。计算成像提供了一个通用的框架来共同设计传感硬件和计算软件,以构建新颖和非传统的相机。这项研究将解决一些基本的理论和算法问题,优化传感,表示和恢复计算成像。该研究被组织成三个相互关联的推力:(1)优化和扩展计算成像系统可以使用可编程光学器件真实捕获的测量空间。(2)以端到端的方式学习感知、数据表示和恢复算法。(3)为计算成像系统开发有效的算法,超越线性和平移不变模型。从这项研究中获得的见解将帮助我们了解现实计算成像系统中存在的一些基本限制,并提供在给定约束条件下优化它们的工具。本研究开发的模型和算法将通过真实的成像实验进行验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Incremental Task Learning with Incremental Rank Updates
- DOI:10.48550/arxiv.2207.09074
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Rakib Hyder;Ken Shao;Boyu Hou;P. Markopoulos;Ashley Prater-Bennette;M. Salman Asif
- 通讯作者:Rakib Hyder;Ken Shao;Boyu Hou;P. Markopoulos;Ashley Prater-Bennette;M. Salman Asif
Coded Illumination for 3D Lensless Imaging
用于 3D 无透镜成像的编码照明
- DOI:10.1109/ojsp.2022.3231180
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Zheng, Yucheng;Asif, M. Salman
- 通讯作者:Asif, M. Salman
Spatial and axial resolution limits for mask-based lensless cameras
基于掩模的无镜头相机的空间和轴向分辨率限制
- DOI:10.1364/oe.480025
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Hua, Yi;Asif, M. Salman;Sankaranarayanan, Aswin C.
- 通讯作者:Sankaranarayanan, Aswin C.
Ensemble-based Blackbox Attacks on Dense Prediction
- DOI:10.1109/cvpr52729.2023.00394
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Zikui Cai;Yaoteng Tan;M. Salman Asif
- 通讯作者:Zikui Cai;Yaoteng Tan;M. Salman Asif
Recovery Analysis for Plug-and-Play Priors using the Restricted Eigenvalue Condition
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Jiaming Liu;M. Salman Asif;B. Wohlberg;U. Kamilov
- 通讯作者:Jiaming Liu;M. Salman Asif;B. Wohlberg;U. Kamilov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muhammad Salman Asif其他文献
Muhammad Salman Asif的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
CAREER: Co-Optimized Sensing and Reconstruction for Next-Generation Computational Cameras
职业:下一代计算相机的协同优化传感和重建
- 批准号:
2048237 - 财政年份:2021
- 资助金额:
$ 53.28万 - 项目类别:
Continuing Grant
Optimized Sampling Approaches for Compressive Sensing in Multi-Dimensional Datastreams
多维数据流中压缩感知的优化采样方法
- 批准号:
2599531 - 财政年份:2021
- 资助金额:
$ 53.28万 - 项目类别:
Studentship
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
- 批准号:
2131622 - 财政年份:2021
- 资助金额:
$ 53.28万 - 项目类别:
Continuing Grant
LEAP-HI: AI-Optimized 3D Printing of Super-Soft Materials for Personalized Sensing
LEAP-HI:人工智能优化的超软材料 3D 打印,实现个性化传感
- 批准号:
2053760 - 财政年份:2021
- 资助金额:
$ 53.28万 - 项目类别:
Standard Grant
Development of a miniaturized single-port automated insulin delivery system utilizing a glucose sensing catheter, ultra-concentrated insulin, and an optimized control algorithm
利用葡萄糖传感导管、超浓缩胰岛素和优化控制算法开发小型化单端口自动胰岛素输送系统
- 批准号:
10452613 - 财政年份:2019
- 资助金额:
$ 53.28万 - 项目类别:
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
- 批准号:
1845639 - 财政年份:2019
- 资助金额:
$ 53.28万 - 项目类别:
Continuing Grant
Development of a miniaturized single-port automated insulin delivery system utilizing a glucose sensing catheter, ultra-concentrated insulin, and an optimized control algorithm
利用葡萄糖传感导管、超浓缩胰岛素和优化控制算法开发小型化单端口自动胰岛素输送系统
- 批准号:
10296620 - 财政年份:2019
- 资助金额:
$ 53.28万 - 项目类别:
Development of a miniaturized, single-port automated insulin delivery system utilizing a glucose sensing catheter, ultra-concentrated insulin, and an optimized control algorithm
利用葡萄糖传感导管、超浓缩胰岛素和优化的控制算法开发小型化、单端口自动胰岛素输送系统
- 批准号:
9898915 - 财政年份:2019
- 资助金额:
$ 53.28万 - 项目类别:
Sensing Mechanism Optimized for Forest Environment out of Infrastructure Service Range
针对基础设施服务范围之外的森林环境优化传感机制
- 批准号:
15H02722 - 财政年份:2015
- 资助金额:
$ 53.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimized Data Acquisition for Image Reconstruction in Magnetic Particle Imaging (MPI) Based on Compressed Sensing
基于压缩感知的磁粒子成像(MPI)图像重建的优化数据采集
- 批准号:
250691157 - 财政年份:2014
- 资助金额:
$ 53.28万 - 项目类别:
Research Grants